KM生存分析如何取最佳的cutoff

KM生存分析

如何取最佳cutoff

  • KM生存分析中通常取中位值作为cutoff,但也并不一定是这样
  • 必要时可以选择最佳的cutoff值,如何实现? ### survival package
library(survival)
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## Loading required package: magrittr

surv_cutpoint函数

  • data:包含生存数据和连续变量的的数据框
  • time, event:column names containing time and event data, respectively. Event values sould be 0 or 1.

官方示例

# 0. Load some data
data(myeloma)
head(myeloma)
##          molecular_group chr1q21_status treatment event  time   CCND1
## GSM50986      Cyclin D-1       3 copies       TT2     0 69.24  9908.4
## GSM50988      Cyclin D-2       2 copies       TT2     0 66.43 16698.8
## GSM50989           MMSET       2 copies       TT2     0 66.50   294.5
## GSM50990           MMSET       3 copies       TT2     1 42.67   241.9
## GSM50991             MAF           <NA>       TT2     0 65.00   472.6
## GSM50992    Hyperdiploid       2 copies       TT2     0 65.20   664.1
##          CRIM1 DEPDC1    IRF4   TP53   WHSC1
## GSM50986 420.9  523.5 16156.5   10.0   261.9
## GSM50988  52.0   21.1 16946.2 1056.9   363.8
## GSM50989 617.9  192.9  8903.9 1762.8 10042.9
## GSM50990  11.9  184.7 11894.7  946.8  4931.0
## GSM50991  38.8  212.0  7563.1  361.4   165.0
## GSM50992  16.9  341.6 16023.4 2096.3   569.2

1. Determine the optimal cutpoint of variables

res.cut <- surv_cutpoint(myeloma, time = "time", event = "event",
   variables = c("DEPDC1", "WHSC1", "CRIM1"))

summary(res.cut)
##        cutpoint statistic
## DEPDC1    279.8  4.275452
## WHSC1    3205.6  3.361330
## CRIM1      82.3  1.968317

2. Plot cutpoint for DEPDC1

# palette = "npg" (nature publishing group), see ?ggpubr::ggpar
plot(res.cut, "DEPDC1", palette = "npg")
## $DEPDC1
image.png

3. Categorize variables

res.cat <- surv_categorize(res.cut)
head(res.cat)
##           time event DEPDC1 WHSC1 CRIM1
## GSM50986 69.24     0   high   low  high
## GSM50988 66.43     0    low   low   low
## GSM50989 66.50     0    low  high  high
## GSM50990 42.67     1    low  high   low
## GSM50991 65.00     0    low   low   low
## GSM50992 65.20     0   high   low   low

4. Fit survival curves and visualize

library("survival")
fit <- survfit(Surv(time, event) ~DEPDC1, data = res.cat)
ggsurvplot(fit, data = res.cat, risk.table = TRUE, conf.int = TRUE)
image.png

参考资料

官方文档

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容