2. 尾部的零

描述

设计一个算法,计算出n阶乘中尾部零的个数

样例

11! = 39916800,因此应该返回 2

挑战

O(logN) 的时间复杂度

思路
问题:N的阶乘(N!)中的末尾有多少个0?
例如:N = 5, N ! = 120.末尾有1个0.

分析:想到这个问题,有人可能第一反应就是现求出N!,然后再根据求出的结果,除10来计算,最后得出N!的末尾有多少个0。但是转念一想,会不会溢出,超时等等。

其实,从"哪些数相乘可以得到10"这个角度,问题就变得比较的简单了。
首先考虑,如果N的阶乘为K和10的M次方的乘积,那么N!末尾就有M的0。如果将N的阶乘分解后,那么
N的阶乘可以分解为: 2的X次方,3的Y次方,5次Z方,.....的乘积。由于10 = 2 * 5,所以M只能和X和Z有关,每一对2和5相乘就可以得到一个10,于是M = MIN(X,Z),不难看出X大于Z,因为被2整除的频率比被5整除的频率高的多。所以可以把公式简化为M=Z.

由上面的分析可以看出,只要计算出Z的值,就可以得到N!末尾0的个数
方法一
要计算Z,最直接的方法就是求出N的阶乘的所有因式(1,2,3,...,N)分解中5的指数。然后求和。
方法二:
Z = N/5 + N /(55) + N/(555).....知道N/(5的K次方)等于0
公式中 N/5表示不大于N的数中能被5整除的数贡献一个5,N/(5
5)表示不大于N的数中能被25整除的数再共享一个5.......

代码

class Solution {
    /*
     * param n: As desciption
     * return: An integer, denote the number of trailing zeros in n!
     */
    public long trailingZeros(long n) {
        long sum = 0;
        while (n != 0) {
            sum += n / 5;
            n /= 5;
        }
        return sum;
    }
};
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 设计一个算法,计算出n阶乘中尾部零的个数样例11! = 39916800,因此应该返回 2.这其实是一个数学题,思...
    和蔼的zhxing阅读 258评论 0 0
  • 1、蛮力法: Ⅰ、算出n! Ⅱ、不断除10除到尾位不是0为止 该方法简单直接暴力,但阶乘数字很大,int类型最大能...
    剑戈2阅读 1,199评论 0 0
  • erlang中的link/0函数可以使2个进程互相联系在一起,其中一个进程结束后,另外一个会收到这个进程的结束原因...
    格通阅读 648评论 0 1
  • 老玖九阅读 168评论 1 1
  • 崔木杉看见朱佳强望过来的目光中充满怀疑,崔木杉知道这时候不可以泄漏身份。因为英材计划马上要实行,如果因为自己而导致...
    快乐都市阅读 403评论 0 0