Hive压缩与配置

优点

在Hadoop集群中,有大量的数据复制和移动操作,压缩过后可以减少文件的大小,从而可以减少磁盘和网络的I/O。

压缩格式

常见的有gzip、bzip2、lzo、snappy、lz4等压缩算法。一般来说,好的压缩算法都是在解压缩的时间和压缩率上有不同的权衡。比如说:snappy压缩算法虽然压缩率不高,但是解压缩的时间相对于前两个更短。在hadoop中的压缩格式需要支持分割(一个文件可以被压缩成几个文件,并且每个压缩文件可以单独解压),这样可以交给多个map任务处理。

Hive的压缩配置

**以配置snappy为例 **

  1. 因为Hive是以Hadoop框架为基础的,所以先要查看hadoop是否支持snappy压缩。
    使用下面的命令查看hadoop当前支持的压缩。可以发现默认情况下不支持snappy。
    [wulei@bigdata-00 hadoop-2.5.0]$ bin/hadoop checknative
    1.png
  2. 编译Snappy
    具体编译流程见:http://www.micmiu.com/bigdata/hadoop/hadoop-snappy-install-config/
  3. 检查是否编译成功


    2.png
  4. 在mapreduce中配置压缩
    首先说明mapreduce哪些过程可以设置压缩:需要分析处理的数据在进入map前可以压缩,然后解压处理,map处理完成后的输出可以压缩,这样可以减少网络I/O(reduce通常和map不在同一节点上),reduce拷贝压缩的数据后进行解压,处理完成后可以压缩存储在hdfs上,以减少磁盘占用量。


    4.png
  5. 在Hive中设置压缩
    因为有的hive语句是嵌套的,可以对hive的中间结果集也设置压缩
    hive.exec.compress.intermediate=true
    开启压缩
    mapreduce.map.output.compress=true
    配置压缩格式
    mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.SnappyCodec
  6. 因为Hive底层用的mapreduce,也可以直接在hadoop中对mapred-site.xml进行配置
        <!-- map输出压缩 -->
        <property>
                <name>mapreduce.map.output.compress</name>
                <value>true</value>
        </property>
        <property>
                <name>mapreduce.map.output.compress.codec</name>
                <value>org.apache.hadoop.io.compress.SnappyCodec</value>
        </property>
        <!-- reduce输出压缩 -->
        <property>
                <name>mapreduce.output.fileoutputformat.compress</name>
                <value>true</value>
        </property>
        <property>
                <name>mapreduce.output.fileoutputformat.compress.codec</name>
                <value>org.apache.hadoop.io.compress.SnappyCodec</value>
        </property>
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容