R语言tidyr包的使用

reshape2包的进化版—tidyr包

tidyr包的作者是Hadley Wickham。这个包常跟dplyr结合使用。

本文将演示tidyr包中下述四个函数的用法:

gather—宽数据转为长数据。类似于reshape2包中的melt函数

spread—长数据转为宽数据。类似于reshape2包中的cast函数

unit—多列合并为一列

separate—将一列分离为多列

下面使用datasets包中的mtcars数据集做演示。

library(tidyr)

library(dplyr)

head(mtcars)

mpg cyl disp  hp drat    wt  qsec vs am gear carb

Mazda RX4        21.0  6  160 110 3.90 2.620 16.46  0  1    4    4

Mazda RX4 Wag    21.0  6  160 110 3.90 2.875 17.02  0  1    4    4

Datsun 710        22.8  4  108  93 3.85 2.320 18.61  1  1    4    1

Hornet 4 Drive    21.4  6  258 110 3.08 3.215 19.44  1  0    3    1

Hornet Sportabout 18.7  8  360 175 3.15 3.440 17.02  0  0    3    2

Valiant          18.1  6  225 105 2.76 3.460 20.22  1  0    3    1

为方便处理,在数据集中增加一列car

mtcars$car <- rownames(mtcars)

mtcars <- mtcars[, c(12, 1:11)]

gather

gather的调用格式为:

gather(data, key, value, ..., na.rm = FALSE, convert = FALSE)

这里,...表示需要聚合的指定列。

与reshape2包中的melt函数一样,得到如下结果:

mtcarsNew <- mtcars %>% gather(attribute, value, -car)

head(mtcarsNew)

car attribute value

1        Mazda RX4      mpg  21.0

2    Mazda RX4 Wag      mpg  21.0

3        Datsun 710      mpg  22.8

4    Hornet 4 Drive      mpg  21.4

5 Hornet Sportabout      mpg  18.7

6          Valiant      mpg  18.1

tail(mtcarsNew)

car attribute value

347  Porsche 914-2      carb    2

348  Lotus Europa      carb    2

349 Ford Pantera L      carb    4

350  Ferrari Dino      carb    6

351  Maserati Bora      carb    8

352    Volvo 142E      carb    2

如你所见,除了car列外,其余列聚合成两列,分别命名为attribute和value。

tidyr很好的一点是可以只gather若干列而其他列保持不变。如果你想gather在map和gear之间的所有列而保持carb和car列不变,可以像下面这样做:

mtcarsNew <- mtcars %>% gather(attribute, value, mpg:gear)

head(mtcarsNew)

car carb attribute value

1        Mazda RX4    4      mpg  21.0

2    Mazda RX4 Wag    4      mpg  21.0

3        Datsun 710    1      mpg  22.8

4    Hornet 4 Drive    1      mpg  21.4

5 Hornet Sportabout    2      mpg  18.7

6          Valiant    1      mpg  18.1

spread

spread的调用格式为:

spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE)

与reshape2包中的cast函数一样,得到如下结果:

mtcarsSpread <- mtcarsNew %>% spread(attribute, value)

head(mtcarsSpread)

car carb  mpg cyl disp  hp drat    wt  qsec vs am gear

1        AMC Javelin    2 15.2  8  304 150 3.15 3.435 17.30  0  0    3

2 Cadillac Fleetwood    4 10.4  8  472 205 2.93 5.250 17.98  0  0    3

3        Camaro Z28    4 13.3  8  350 245 3.73 3.840 15.41  0  0    3

4  Chrysler Imperial    4 14.7  8  440 230 3.23 5.345 17.42  0  0    3

5        Datsun 710    1 22.8  4  108  93 3.85 2.320 18.61  1  1    4

6  Dodge Challenger    2 15.5  8  318 150 2.76 3.520 16.87  0  0    3

unite

unite的调用格式如下:

unite(data, col, ..., sep = "_", remove = TRUE)

where ... represents the columns to unite and col represents the c

这里,...表示需要合并的列,col表示合并后的列。

我们先虚构一些数据:

set.seed(1)

date <- as.Date('2016-01-01') + 0:14

hour <- sample(1:24, 15)

min <- sample(1:60, 15)

second <- sample(1:60, 15)

event <- sample(letters, 15)

data <- data.frame(date, hour, min, second, event)

data

date hour min second event

1  2016-01-01    7  30    29    u

2  2016-01-02    9  43    36    a

3  2016-01-03  13  58    60    l

4  2016-01-04  20  22    11    q

5  2016-01-05    5  44    47    p

6  2016-01-06  18  52    37    k

7  2016-01-07  19  12    43    r

8  2016-01-08  12  35      6    i

9  2016-01-09  11  7    38    e

10 2016-01-10    1  14    21    b

11 2016-01-11    3  20    42    w

12 2016-01-12  14  1    32    t

13 2016-01-13  23  19    52    h

14 2016-01-14  21  41    26    s

15 2016-01-15    8  16    25    o

现在,我们需要把date,hour,min和second列合并为新列datetime。通常,R中的日期时间格式为"Year-Month-Day-Hour:Min:Second"。

dataNew <- data %>%

unite(datehour, date, hour, sep = ' ') %>%

unite(datetime, datehour, min, second, sep = ':')

dataNew

datetime event

1  2016-01-01 7:30:29    u

2  2016-01-02 9:43:36    a

3  2016-01-03 13:58:60    l

4  2016-01-04 20:22:11    q

5  2016-01-05 5:44:47    p

6  2016-01-06 18:52:37    k

7  2016-01-07 19:12:43    r

8  2016-01-08 12:35:6    i

9  2016-01-09 11:7:38    e

10  2016-01-10 1:14:21    b

11  2016-01-11 3:20:42    w

12  2016-01-12 14:1:32    t

13 2016-01-13 23:19:52    h

14 2016-01-14 21:41:26    s

15  2016-01-15 8:16:25    o

separate

separate的调用格式为:

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE,

convert = FALSE, extra = "warn", fill = "warn", ...)

我们可以用separate函数将数据恢复到刚创建的时候,如下所示:

data1 <- dataNew %>%

separate(datetime, c('date', 'time'), sep = ' ') %>%

separate(time, c('hour', 'min', 'second'), sep = ':')

data1

date hour min second event

1  2016-01-01  07  30    29    u

2  2016-01-02  09  43    36    a

3  2016-01-03  13  59    00    l

4  2016-01-04  20  22    11    q

5  2016-01-05  05  44    47    p

6  2016-01-06  18  52    37    k

7  2016-01-07  19  12    43    r

8  2016-01-08  12  35    06    i

9  2016-01-09  11  07    38    e

10 2016-01-10  01  14    21    b

11 2016-01-11  03  20    42    w

12 2016-01-12  14  01    32    t

13 2016-01-13  23  19    52    h

14 2016-01-14  21  41    26    s

15 2016-01-15  08  16    25    o

首先,将datetime分为date列和time列。然后,将time列分为hour,min,second列。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容

  • 最近在写个性化推荐的论文,经常用到Python来处理数据,被pandas和numpy中的数据选取和索引问题绕的比较...
    shuhanrainbow阅读 4,550评论 6 19
  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,940评论 6 13
  • 不知道是不是因为前两年运动伤到膝盖的原因,这两年打不了篮球,但是却养成了看篮球的习惯,周末的休息时光都喜欢自己在家...
    allllllen阅读 235评论 0 0
  • 小的时候我有很多的梦想 。我想去特别多的地方去旅行,比如杭州西湖,沿海厦门,还有四季如春的云南。不过到目前...
    今年很流行阅读 275评论 0 0
  • 此书属于杂文随笔作品集,涉及思想文化讨论、日常生活发掘的真知灼见、社会科学研究的评论、还有域外生活的杂感及对社会现...
    DTttt阅读 2,476评论 0 0