“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。
特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。
“特征工程是将原始数据转化为特征的过程,这些特征可以更好地向预测模型描述潜在问题,从而提高模型对未见数据的准确性。” --Jason Brownlee博士
特征工程从概念上一般包括如下几个方法:
- 特征构建:特征构建是指从原始数据中人工的找出一些具有实际意义的特征。需要花时间去观察原始数据,思考问题的潜在形式和数据结构,对数据敏感性和机器学习实战经验能帮助特征构建。除此之外,属性分割和结合是特征构建时常使用的方法。特征构建是个非常麻烦的问题,书里面也很少提到具体的方法,需要对问题有比较深入的理解。
- 特征抽取:一些观测数据如果直接建模,其原始状态的数据太多。像图像、音频和文本数据,如果将其看做是表格数据,那么其中包含了数以千计的属性。特征抽取是自动地对原始观测降维,使其特征集合小到可以进行建模的过程。通常可采用主成分分析(PCA)、线性判别分析(LDA))等方法;对于图像数据,可以进行线(line)或边缘(edge)的提取;根据相应的领域,图像、视频和音频数据可以有很多数字信号处理的方法对其进行处理。
- 特征选择:不同的特征对模型的准确度的影响不同,有些特征与要解决的问题不相关,有些特征是冗余信息,这些特征都应该被移除掉。特征选择是自动地选择出对于问题最重要的那些特征子集的过程。常用的特征选择方法可以分为3类:过滤式(filter)、包裹式(wrapper)和嵌入式(embedding)。
小结
总的来说,数据会存在各种各样的问题,针对这些问题我们的特征工程给出了相应的解决办法:1.特征解释能力不足,我们可以尝试使用特征构建,对数据进行升维来提升特征解释能力;2.特征冗余,维度太高,噪声太多,我们可以通过特征抽取和特征选择,来对数据进行降维去噪,提炼特征。当然还有其他的特征处理方法,一般需要根据具体问题而定。
特征工程从过程上一般包括如下几个过程:
-
数据预处理:数据预处理是特征工程中最为重要的一个环节,良好的数据预处理可以使模型的训练达到事半功倍的效果。数据预处理旨在通过归一化、标准化、正则化等方式改进不完整、不一致、无法直接使用的数据。
原始数据的问题一般有:存在异常值、存在缺失值、不属于同一量纲、信息冗余、定性特征不能直接使用、信息利用率低等问题。
具体解决的方法一般有:归一化、标准化、离散化、二值化、哑编码等方法。 - 特征选择:不同的特征对模型的影响程度不同,我们要自动地选择出对问题重要的一些特征,移除与问题相关性不是很大的特征,这个过程就叫做特征选择。特征的选择在特征工程中十分重要,往往可以直接决定最后模型训练效果的好坏。常用的特征选择方法有:过滤式(filter)、包裹式(wrapper)、嵌入式(embedding)。
- 降维:如果拿特征选择后的数据直接进行模型的训练,由于数据的特征矩阵维度大,可能会存在数据难以理解、计算量增大、训练时间过长等问题,因此我们要对数据进行降维。降维是指把原始高维空间的特征投影到低维度的空间,进行特征的重组,以减少数据的维度。降维与特征选择最大的不同在于,特征选择是进行特征的剔除、删减,而降维是做特征的重组构成新的特征,原始特征全部“消失”了,性质发生了根本的变化。常见的降维方法有:主成分分析法(PCA)和线性判别分析法(LDA)。
小结
具体方法的学习可以参考以下博客:
https://www.cnblogs.com/jasonfreak/p/5448385.html
https://zhuanlan.zhihu.com/p/36503570
https://www.ituring.com.cn/book/tupubarticle/23033#
代码实战:
导入数据
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
%matplotlib inline
path = './datalab/231784/'
Train_data = pd.read_csv(path+'used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv(path+'used_car_testA_20200313.csv', sep=' ')
print(Train_data.shape)
print(Test_data.shape)
- 异常值处理
# 这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
"""
用于清洗异常值,默认用 box_plot(scale=3)进行清洗
:param data: 接收 pandas 数据格式
:param col_name: pandas 列名
:param scale: 尺度
:return:
"""
def box_plot_outliers(data_ser, box_scale):
"""
利用箱线图去除异常值
:param data_ser: 接收 pandas.Series 数据格式
:param box_scale: 箱线图尺度,
:return:
"""
iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
val_low = data_ser.quantile(0.25) - iqr
val_up = data_ser.quantile(0.75) + iqr
rule_low = (data_ser < val_low)
rule_up = (data_ser > val_up)
return (rule_low, rule_up), (val_low, val_up)
data_n = data.copy()
data_series = data_n[col_name]
rule, value = box_plot_outliers(data_series, box_scale=scale)
index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
print("Delete number is: {}".format(len(index)))
data_n = data_n.drop(index)
data_n.reset_index(drop=True, inplace=True)
print("Now column number is: {}".format(data_n.shape[0]))
index_low = np.arange(data_series.shape[0])[rule[0]]
outliers = data_series.iloc[index_low]
print("Description of data less than the lower bound is:")
print(pd.Series(outliers).describe())
index_up = np.arange(data_series.shape[0])[rule[1]]
outliers = data_series.iloc[index_up]
print("Description of data larger than the upper bound is:")
print(pd.Series(outliers).describe())
fig, ax = plt.subplots(1, 2, figsize=(10, 7))
sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
return data_n
# 我们可以删掉一些异常数据,以 power 为例。
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是
Train_data = outliers_proc(Train_data, 'power', scale=3)
- 特征构造
2.1 适合树模型的特征构造
# 训练集和测试集放在一起,方便构造特征
Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') -
pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days
# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()
# 从邮编中提取城市信息,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data = data
# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
Train_gb = Train_data.groupby("brand")
all_info = {}
for kind, kind_data in Train_gb:
info = {}
kind_data = kind_data[kind_data['price'] > 0]
info['brand_amount'] = len(kind_data)
info['brand_price_max'] = kind_data.price.max()
info['brand_price_median'] = kind_data.price.median()
info['brand_price_min'] = kind_data.price.min()
info['brand_price_sum'] = kind_data.price.sum()
info['brand_price_std'] = kind_data.price.std()
info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')
# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()
# 删除不需要的数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)
# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv', index=0)
2.2 适合LR模型的特征构造
# 我们可以再构造一份特征给 LR NN 之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看下数据分布:
data['power'].plot.hist()
# 我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,
# 所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替
Train_data['power'].plot.hist()
# 我们对其取 log,在做归一化
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1)
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
# km 的比较正常,应该是已经做过分桶了
data['kilometer'].plot.hist()
# 所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) /
(np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()
# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
return (x - np.min(x)) / (np.max(x) - np.min(x))
data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) /
(np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) /
(np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) /
(np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
(np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) /
(np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) /
(np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) /
(np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))
# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
'gearbox', 'notRepairedDamage', 'power_bin'])
# 这份数据可以给 LR 用
data.to_csv('data_for_lr.csv', index=0)
- 特征选择
3.1 过滤式
# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))
# 当然也可以直接看图
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average',
'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True, vmax=0.8)
3.2 包裹式
!pip install mlxtend # 不要点,下载速度很慢
# k_feature 太大会很难跑,没服务器,所以提前 interrupt 了
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
k_features=10,
forward=True,
floating=False,
scoring = 'r2',
cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_
# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()
3.3 嵌入式
待更新