Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
分析
合并k个已排序的链表,并分析时间复杂度。k为可大可小的参数,表示需要合并的链表数目。
自定义一个Heap类:
-
vector<ListNode*> heap
成员变量作为最小堆。 -
vector<ListNode*> indexHeap
记录最小堆内各元素来自于lists
中的那个链表。与最小堆heap
内的元素一一对应。 -
Heap(vector<ListNode*>& lists);
构造Heap
对象,抽取lists
各链表头部的第一个元素。 -
void push(ListNode*, int);
向heap
中插入一个元素,对应地向indexHeap
中插入其链表编号。 -
int pop();
删除堆顶元素并调整堆,同时返回删除元素所在的链表编号,下一步可以在该链表中抽取下一个元素。 -
ListNode* front();
返回堆顶元素(不删除)。 -
bool empty();
返回堆是否为空。 -
adjustUp(int index);
将堆中编号为index
的元素向上调整。 -
adjustDown(int index);
将堆中编号为index
的元素向下调整。
时间复杂度:设第i个链表的长度为ni
,则时间复杂度为O(sum(ni)*logk)
。每从堆中取出一个节点,需要O(logk)
调整堆,最坏情况总共需要sum(ni)
次调整。
注意
- 当
lists
中某链表已经完全插入到合并链表中时,应避免向堆中插入NULL
。 -
adjustDown
中循环体应注意s != index
,否则会进入死循环,详见代码。
AC代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Heap {
public:
Heap(vector<ListNode*>& lists) {
for (int i = 0; i != lists.size(); ++i) {
if (lists[i]) {
push(lists[i], i);
lists[i] = lists[i]->next;
}
}
// for (int i = heap.size() - 1; i >= 0; --i) {
// adjustDown(i);
// }
}
int size() {
return heap.size();
}
bool empty() {
return heap.empty() && indexHeap.empty();
}
void push(ListNode* pointer, int index) {
heap.push_back(pointer);
indexHeap.push_back(index);
adjustUp(heap.size() - 1);
}
int pop() {
int index = indexHeap.front();
heap.front() = heap.back();
indexHeap.front() = indexHeap.back();
heap.pop_back();
indexHeap.pop_back();
adjustDown(0);
return index;
}
ListNode* front() {
return heap.front();
}
private:
vector<ListNode*> heap;
vector<int> indexHeap;
void adjustDown(int index) {
if (heap.empty()) {
return;
}
ListNode* save = heap[index];
int saveIndex = indexHeap[index];
for (int s = index * 2 + 1; s < heap.size(); s = s * 2 + 1) {
if (s + 1 < heap.size() && heap[s]->val > heap[s+1]->val) {
s += 1;
}
if (heap[s]->val < save->val) {
heap[index] = heap[s];
indexHeap[index] = indexHeap[s];
index = s;
} else {
break;
}
}
heap[index] = save;
indexHeap[index] = saveIndex;
}
void adjustUp(int index) {
ListNode* save = heap[index];
int saveIndex = indexHeap[index];
for (int s = (index - 1) / 2; s >= 0 && s != index; s = (s - 1) / 2) {
if (heap[s]->val > save->val) {
heap[index] = heap[s];
indexHeap[index] = indexHeap[s];
index = s;
} else {
break;
}
}
heap[index] = save;
indexHeap[index] = saveIndex;
}
};
class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
ListNode* root = NULL, *current;
Heap heap(lists);
while (!heap.empty()) {
if (root) {
current->next = heap.front();
current = current->next;
} else {
root = current = heap.front();
}
int index = heap.pop();
if (lists[index]) {
heap.push(lists[index], index);
lists[index] = lists[index]->next;
}
}
return root;
}
};