K近邻算法识别数字---OpenCV-Python开发指南(40)

K近邻算法

机器学习算法是从数据中产生模型,也就是进行学习的算法。我们把经验提供给算法,它就能够根据经验数据产生模型。在面对新的情况时,模型就会为我们提供预测的结果。例如,识别数字,文字时,其实识别它们并不需要颜色,使用二值图像就行,而二值图像的数字文字都是0,1组成,机器学习会根据0与1的位置匹配最相近的文字或者数字,从而得出结果。而机器学习中的K近邻算法最适合识别图像中的文字或者数字信息。

K近邻算法又称为KNN算法,是非常经典的机器学习算法。其原理非常简单:对于一个新样本,这里可以理解为一个新数字图像或文字图像,K近邻算法会在已有数据中寻找与它最相似的K个数据,或者说离它最近的K个数据,如果这K个数据大多数属于某个类别,则该样本也属于这个类别。

识别数字

在OpenCV-Python开发指南的第一篇我们就介绍了二值图像,二值图像可以区分形状已经物体大概的轮廓。如下图所示:


1.png

这里的图像A就是0和1的矩阵集合,数字1代表有颜色的地方,数字0代表无颜色的地方。

这里,我们提供给机器学习的样本数据为1024个元素的一维数组,通过Excel表格提供,而图像是一个矩阵并不是一维数组。所以,在处理原始图像时,我们需要将图片的矩阵数据转换为一维数组,以便于机器学习的匹配预测。

调整图像

首先,我们需要识别的数字图像可能并不是一个二值图像,甚至可能不是一个灰度图像。所以我们需要将其转换为二值图像。

其次,OpenCV转换的二值图像是一个矩阵,而机器学习训练的数据是一个1024长度的一维数组。所以,我们还需要将图像缩小为32*32像素的图像,这样其转换为一维数组才是1024个0,1数据。

具体代码如下:

import cv2

img = cv2.imread("40.jpg")
img = cv2.resize(img, (32, 32))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
img[img == 255] = 1
img_array= img.reshape(1, -1)  # 转换为一维数组

这里,我们首先获取图像,然后将图像转换为32*32像素的大小。接着,在转换为灰度图像,并通过二值化处理将图像变更为0和255两个值,最后将255白色的部分替换成1。最后,将其转换为一维数组。

K近邻算法模型搭建

不管是K近邻算法还是机器学习算法,我们一般搭建机器学习模型都分为2个步骤。第1步,划分训练集与测试集,第2步完成模型的搭建.

下面我们具体实现,代码如下:

import cv2
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN

df = pd.read_excel("手写字体识别.xlsx")
# 提取特征变量,识别数字时,其特征就是1024个0,1数据,而目标变量就是1024个数字组成对应的结果数字
X = df.drop(columns="对应数字")
Y = df['对应数字']

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=111)
knn = KNN(n_neighbors=5)
knn.fit(x_train, y_train)

answer=knn.predict(img_array)
print("图中的数字是:"+str(answer[0]))

这里,我们首先读取手写字体识别的数据集,然后提取特征变量与目标变量。

再然后,使用train_test_split函数将获取的数据集分为测试集与训练集,test_size=0.2表示将20%的数据划为测试集,训练集返回x_train,y_train,测试集返回x_test,y_test。

接着,使用训练集数据建模fit,这里K近邻算法n_neighbors=5,表示选取5个近邻点来决定数字图片的分类,或者说识别判断。

建模完成之后,可以将上面转换图片的一维数组,直接代入到knn.predict函数中,得到预测的结果。我们测试的图片如下:


运行之后,得到的结果如下:

1.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容