《DNK210使用指南 -CanMV版 V1.0》第三十六章 image图像色块追踪实验

第三十六章 image图像色块追踪实验

在上一章节中,介绍了image模块中图像特征检测方法给的使用,本章将继续介绍image模块中图像色块追踪方法的使用。通过本章的学习,读者将学习到image模块中图像色块追踪的使用。

本章分为如下几个小节:

36.1 image模块图像色块追踪方法介绍

36.2 硬件设计

36.3 程序设计

36.4 运行验证

36.1 image模块图像色块追踪方法介绍

image模块为Image对象提供了find_blobs()方法,用于查找图像中的所有色块,find_blobs()方法如下所示:

image.find_blobs(thresholds, invert=False, roi, x_stride=2, y_stride=1, area_threshold=10, pixels_threshold=10, merge=False, margin=0, threshold_cb, merge_cb)

find_blobs()方法用于根据指定的颜色阈值查找图像中的所有色块,并返回image.blob对象列表。

thresholds指的是颜色阈值,该参数必须是元组列表,对于灰度图,每个阈值元组需包含两个值,分别为最小灰度值和最大灰度值,对于RGB565图像,每个阈值元组需要包含六个值,分别是LAB色彩空间下,L、A、B三个通道的最大值和最小值,若要追踪多种颜色的色块,可以在阈值元组列表中传入多个阈值元组。

invert指的是是否对阈值进行翻转操作,阈值翻转后,将追踪阈值之外的色块。

roi指的是对Image对象感兴趣的区域,若未指定,即为图像矩形。

x_stride和y_stride指的是图像处理时需要跳过的X和Y像素的数量,若已知被检测色块较大,可以增加该参数。

area_threshold指的是边界框区域阈值,边界框区域小于该参数的色块将会被过滤。

pixels_threshold指的是像素数量阈值,像素数量小于该参数的速快将会被过滤。

merge指的是是否合并边缘矩形相互交错重重叠且没有被过滤的色块。

margin指的是增大或减小相较测试用色块边界矩形的大小。

threshold_cb指的是阈值过滤的回调函数,该函数会接收到被过滤色块的image.blob对象,并通过返回True来保留色块,通过返回False来过滤色块。

merge_cb指的是色块合并回调函数,该函数会接收到两个即将被合并的色块的image.blob对象,并通过返回True来合并色块,通过返回False来禁止色块合并。

find_blobs()方法会返回image.blobs对象列表。

find_blobs()方法的使用示例如下所示:

import image

img = image.Image(size=(320, 240))

threshold = (8, 63, 8, 49, -77, -36)

blobs = img.find_blobs([threshold], False, (0, 0, img.width(), img.height()), x_stride=2, y_stride=1, area_threshold=10, pixels_threshold=10, merge=True, margin=10)

for b in blobs:

    img.draw_rectangle(b.rect(), color=(255, 0, 0))

关于颜色阈值的设定,CanMVIDE软件提供了“阈值编辑器”工具,可以方便地获取到想要的阈值。通过依次点击CanMV IDE软件上方工具栏中的“工具”à“机器视觉”à“阈值编辑器”,即可打开“阈值编辑器”工具,打开时会提示需要导入一张源图像,可以直接使用“帧缓冲区”窗口中的图像,也可以从本地文件系统中选取,如下图所示:

图36.1.1 打开“阈值编辑器”工具

选好源图像后,便会自动打开“阈值编辑器”工具窗口,接着便可通过提供的一些选项列表和滑块来调整需要的阈值,如下图所示:

图36.1.2 “阈值编辑器”工具窗口

36.2 硬件设计

36.2.1 例程功能

1. 获取摄像头输出的图像,并使用image模块对图像进行色块追踪,追踪到色块后将其框出,最后将图像显示在LCD上。

36.2.2 硬件资源

本章实验内容,主要讲解image模块的使用,无需关注硬件资源。

36.2.3 原理图

本章实验内容,主要讲解image模块的使用,无需关注原理图。

36.3 程序设计

36.3.1 image模块图像色块追踪方法介绍

有关image模块图像色块追踪方法的介绍,请见第36.1小节《image模块图像色块追踪方法介绍》。

36.3.2 程序流程图

图36.3.2.1image图像色块追踪实验流程图

36.3.3 main.py代码

main.py中的脚本代码如下所示:

import lcd

import sensor

import gc

lcd.init()

sensor.reset()

sensor.set_framesize(sensor.QVGA)

sensor.set_pixformat(sensor.RGB565)

sensor.set_hmirror(False)

sensor.set_auto_gain(False, gain_db=6.0)

sensor.set_auto_whitebal(False)

while True:

    img= sensor.snapshot()

    # 色块追踪

   threshold = (7, 63, -21, 46, -71, -23)

   blobs = img.find_blobs([threshold], False, (0, 0, img.width(), img.height()), x_stride=2, y_stride=1, area_threshold=10, pixels_threshold=10, merge=True, margin=10)

    for b in blobs:

       img.draw_rectangle(b.rect(), color=(255, 0, 0))

    lcd.display(img)

    gc.collect()

可以看到一开始是先初始化了LCD和摄像头,并且需要注意的是,在进行色块追踪时,需要关闭摄像头的自动增益和自动白平衡,才能得到更好的效果。

接着在一个循环中不断地获取摄像头输出的图像,因为获取到的图像就是Image对象,因此可以直接调用image模块为Image对象提供的各种方法,然后就是对图像进行色块追踪,并将其在图像中框出,最后在LCD显示图像。

36.4 运行验证

将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,便能看到LCD上显示了摄像头输出的图像,并且指定颜色阈值的色块也被框了出来,如下图所示:

图36.4.1 框出追踪到的色块
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容