update time 2019年11月28日 15:18:33 假目录暂时仅供查看文章结构
读者须知:在跟随大佬学习的历程中,不断地跟着源码查看,主要参阅的博客我会在文章开头着重声明一遍。由于自己能力有限,在总结过程中发现很多东西没有想象的简单,该文章暂时处于烂尾模式
重启计划暂定于一年后。 Binder 真的太深了(个人感觉,短时间内没办法总结好)
如果有看到该篇文章想学Binder知识的同学,可参考以下三篇文章
Binder设计原理
写给 Android 应用工程师的 Binder 原理剖析
Binder源码解析
当然在学习图中为了能看到那个部分比喻,也重新温习了 互联网协议 和 DNS 原理
DNS原理
互联网协议
Binder学习笔记 1
前言
Android系统中,每个应用程序是由Android的Activity,Service,Broadcast,ContentProvider这四组件的中一个或多个组合而成,这四组件所涉及的多进程间的通信底层都是依赖于Binder IPC机制。
此处借用大佬的一段话来诠释Binder Binder设计原理
Android作为一个开放式,拥有众多开发者的的平台,应用程序的来源广泛,确保智能终端的安全是非常重要的。终端用户不希望从网上下载的程序在不知情的情况下偷窥隐私数据,连接无线网络,长期操作底层设备导致电池很快耗尽等等。传统IPC没有任何安全措施,完全依赖上层协议来确保。首先传统IPC的接收方无法获得对方进程可靠的UID/PID(用户ID/进程ID),从而无法鉴别对方身份。Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志。使用传统IPC只能由用户在数据包里填入UID/PID,但这样不可靠,容易被恶意程序利用。可靠的身份标记只有由IPC机制本身在内核中添加。其次传统IPC访问接入点是开放的,无法建立私有通道。比如命名管道的名称,system V的键值,socket的ip地址或文件名都是开放的,只要知道这些接入点的程序都可以和对端建立连接,不管怎样都无法阻止恶意程序通过猜测接收方地址获得连接。
基于以上原因,Android需要建立一套新的IPC机制来满足系统对通信方式,传输性能和安全性的要求,这就是Binder。Binder基于Client-Server通信模式,传输过程只需一次拷贝,为发送发添加UID/PID身份,既支持实名Binder也支持匿名Binder,安全性高。
Binder使用Client-Server通信方式:一个进程作为Server提供诸如视频/音频解码,视频捕获,地址本查询,网络连接等服务;多个进程作为Client向Server发起服务请求,获得所需要的服务。要想实现Client-Server通信据必须实现以下两点:一是server必须有确定的访问接入点或者说地址来接受Client的请求,并且Client可以通过某种途径获知Server的地址;二是制定Command-Reply协议来传输数据。例如在网络通信中Server的访问接入点就是Server主机的IP地址+端口号,传输协议为TCP协议。对Binder而言,Binder可以看成Server提供的实现某个特定服务的访问接入点, Client通过这个‘地址’向Server发送请求来使用该服务;对Client而言,Binder可以看成是通向Server的管道入口,要想和某个Server通信首先必须建立这个管道并获得管道入口。
与其它IPC不同,Binder使用了面向对象的思想来描述作为访问接入点的Binder及其在Client中的入口:Binder是一个实体位于Server中的对象,该对象提供了一套方法用以实现对服务的请求,就象类的成员函数。遍布于client中的入口可以看成指向这个binder对象的‘指针’,一旦获得了这个‘指针’就可以调用该对象的方法访问server。在Client看来,通过Binder‘指针’调用其提供的方法和通过指针调用其它任何本地对象的方法并无区别,尽管前者的实体位于远端Server中,而后者实体位于本地内存中。‘指针’是C++的术语,而更通常的说法是引用,即Client通过Binder的引用访问Server。而软件领域另一个术语‘句柄’也可以用来表述Binder在Client中的存在方式。从通信的角度看,Client中的Binder也可以看作是Server Binder的‘代理’,在本地代表远端Server为Client提供服务。
IPC 简单概要理解
进程间通信(inter-process communication或interprocess communication,简写IPC)是指两个或两个以上进程(或线程)之间进行数据或信号交互的技术方案。
每个Android的进程,只能运行在自己进程所拥有的虚拟地址空间。举例 对应一个4GB的虚拟地址空间,其中3GB是用户空间,1GB是内核空间,当然内核空间的大小是可以通过参数配置调整的。对于用户空间,不同进程之间彼此是不能共享的,而内核空间却是可共享的。Client进程向Server进程通信,恰恰是利用 进程间可共享的内核内存空间 来完成底层通信工作的,Client端与Server端进程往往采用ioctl等方法跟内核空间的驱动进行交互。
Binder 原理
sdk ver : Android 6.0
Gityuan 博客学习地址
Binder 部分为本人你学习其博客的笔记与总结。
Binder通信采用C/S架构,从组件视角来说,包含Client、Server、ServiceManager以及binder驱动,其中ServiceManager用于管理系统中的各种服务。架构图如上所示。
可以看出无论是注册服务和获取服务的过程都需要ServiceManager,需要注意的是此处的Service Manager是指Native层的ServiceManager(C++)。ServiceManager是整个Binder通信机制的管家,是Android进程间通信机制Binder的守护进程,来负责 查询 和 注册服务 。和DNS类似,ServiceManager的作用是将字符形式的Binder名字转化成Client中对该Binder的引用,使得Client能够通过Binder名字获得对Server中Binder实体的引用。
图中Client/Server/ServiceManage之间的相互通信都是基于Binder机制。既然基于Binder机制通信,那么同样也是C/S架构,则图中的3大步骤都有相应的Client端与Server端。
- 注册服务(addService):Server进程要先注册Service到ServiceManager。该过程:Server是客户端,ServiceManager是服务端。
- 获取服务(getService):Client进程使用某个Service前,须先向ServiceManager中获取相应的Service。该过程:Client是客户端,ServiceManager是服务端。
- 使用服务:Client根据得到的Service信息建立与Service所在的Server进程通信的通路,然后就可以直接与Service交互。该过程:client是客户端,server是服务端。
上图中的 Client,Server,Service Manager 之间交互都是虚线表示,是由于它们彼此之间不是直接交互的,而是都通过与Binder驱动进行交互的,从而实现IPC通信方式。其中Binder驱动位于内核空间,Client,Server,Service Manager位于用户空间。Binder驱动和Service Manager可以看做是Android平台的基础架构,而Client和Server是Android的应用层,开发人员只需自定义实现client、Server端,借助Android的基本平台架构便可以直接进行IPC通信。
--------------------------------------------------- 章节分割线 ---------------------------------------------------
Binder 学习笔记 2
Binder 中 ServerManage启动
SMgr是一个进程,Server是另一个进程,Server向SMgr注册Binder必然会涉及进程间通信。当前实现的是进程间通信却又要用到进程间通信,这就好象蛋可以孵出鸡前提却是要找只鸡来孵蛋。Binder的实现比较巧妙:预先创造一只鸡来孵蛋:ServiceManager和其它进程同样采用Binder通信,ServiceManager是Server端,有自己的Binder对象(实体),其它进程都是Client,需要通过这个Binder的引用来实现Binder的注册,查询和获取。ServiceManager提供的Binder比较特殊,它没有名字也不需要注册,当一个进程使用BINDER_SET_CONTEXT_MGR命令将自己注册成ServiceManager时Binder驱动会自动为它创建Binder实体(这就是那只预先造好的鸡)。其次这个Binder的引用在所有Client中都固定为0而无须通过其它手段获得。也就是说,一个Server若要向ServiceManager注册自己Binder就必需通过0这个引用号和ServiceManager的Binder通信。
↓↓↓↓↓↓ ServerManage 启动流程图
ServiceManager是Binder IPC通信过程中的守护进程,本身也是一个Binder服务,但并没有采用libbinder中的多线程模型来与Binder驱动通信,而是自行编写了binder.c直接和Binder驱动来通信,并且只有一个循环binder_loop来进行读取和处理事务,接下来我们通过源码看下 ServiceManager怎么玩的。
通过查看官网 得知ServiceManager 是由init进程通过解析init.rc文件而创建的,其所对应的可执行程序/system/bin/servicemanager,所对应的源文件是service_manager.c。通过 service_manager.c 中的main() 函数为入口 查看整个启动 ServiceManager的流程。
主要方法都在 main函数中出现,后续是对部分方法的深入查看
// 主方法
int main(int argc, char **argv) {
struct binder_state *bs;
//第一步 打开binder驱动,申请128k字节大小的内存空间
bs = binder_open(128*1024);
...
//第二步 成为上下文管理者
if (binder_become_context_manager(bs)) {
return -1;
}
//selinux权限 判断进程 是否有权利注册或者查看
selinux_enabled = is_selinux_enabled();
sehandle = selinux_android_service_context_handle();
selinux_status_open(true);
if (selinux_enabled > 0) {
if (sehandle == NULL) {
abort(); //无法获取sehandle
}
if (getcon(&service_manager_context) != 0) {
abort(); //无法获取service_manager上下文
}
}
...
//第三步 进入无限循环,处理client端发来的请求。svcmgr_handler 主要提供服务注册和查找
binder_loop(bs, svcmgr_handler);
return 0;
}
第一步 打开binder驱动
对应上图中的 第一步到第四步
先调用open()打开binder设备,open()方法经过系统调用,进入Binder驱动,然后调用方法binder_open(),该方法会在Binder驱动层创建一个binder_proc对象,再将binder_proc对象赋值给fd->private_data,同时放入全局链表binder_procs。
再通过ioctl()检验当前binder版本与Binder驱动层的版本是否一致。
调用mmap()进行内存映射,同理mmap()方法经过系统调用,对应于Binder驱动层的binder_mmap()方法,该方法会在Binder驱动层创建Binder_buffer对象,并放入当前binder_proc的proc->buffers链表。
第二步 注册成为binder服务的大管家
对应上图中的 第五到 第七步
根据 main() 函数中的 第二步代码 引用链为
binder_become_context_manager(struct binder_state) -> binder_ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0) -> binder_ioctl_set_ctx_mgr(struct file *filp)
在 binder_ioctl_set_ctx_mgr()方法中 创建了全局的单例binder_node对象binder_context_mgr_node,并将binder_context_mgr_node的强弱引用各加1.部分代码块如下:
static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
kuid_t curr_euid = current_euid();
//保证只创建一次mgr_node对象
if (binder_context_mgr_node != NULL) {
ret = -EBUSY;
goto out;
}
if (uid_valid(binder_context_mgr_uid)) {
...
} else {
//设置当前线程euid作为Service Manager的uid
binder_context_mgr_uid = curr_euid;
}
//创建ServiceManager实体 终于找到了
binder_context_mgr_node = binder_new_node(proc, 0, 0);
...
binder_context_mgr_node->local_weak_refs++;
binder_context_mgr_node->local_strong_refs++;
binder_context_mgr_node->has_strong_ref = 1;
binder_context_mgr_node->has_weak_ref = 1;
out:
return ret;
}
通过跟踪 我们发现了 binder_new_node () 代码块如下:
static struct binder_node *binder_new_node(struct binder_proc *proc,
binder_uintptr_t ptr,
binder_uintptr_t cookie)
{
struct rb_node **p = &proc->nodes.rb_node;
struct rb_node *parent = NULL;
struct binder_node *node;
//首次进来为空
while (*p) {
parent = *p;
node = rb_entry(parent, struct binder_node, rb_node);
if (ptr < node->ptr)
p = &(*p)->rb_left;
else if (ptr > node->ptr)
p = &(*p)->rb_right;
else
return NULL;
}
//给新创建的binder_node 分配内核空间
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL)
return NULL;
binder_stats_created(BINDER_STAT_NODE);
// 将新创建的node对象添加到proc红黑树;
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &proc->nodes);
node->debug_id = ++binder_last_id;
node->proc = proc;
node->ptr = ptr;
node->cookie = cookie;
node->work.type = BINDER_WORK_NODE; //设置binder_work的type
INIT_LIST_HEAD(&node->work.entry);
INIT_LIST_HEAD(&node->async_todo);
return node;
}
在Binder驱动层创建binder_node结构体对象,并将当前binder_proc加入到binder_node的node->proc。并创建binder_node的async_todo和binder_work两个队列。
第三步 无限循环,处理client端发来的请求
对应上图中的 第九到 第十三步
void binder_loop(struct binder_state *bs, binder_handler func) {
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
//将BC_ENTER_LOOPER命令发送给binder驱动,让Service Manager进入循环
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
//进入循环,不断地binder读写过程
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
break;
}
// 解析binder信息
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
break;
}
if (res < 0) {
break;
}
}
}
进入循环读写操作,由main()方法传递过来的参数func指向svcmgr_handler。
binder_write通过ioctl()将BC_ENTER_LOOPER命令发送给binder驱动,此时bwr只有write_buffer有数据,进入binder_thread_write()方法。 接下来进入for循环,执行ioctl(),此时bwr只有read_buffer有数据,那么进入binder_thread_read()方法。
我们通过 binder_write() -> ioctl(bs->fd, BINDER_WRITE_READ, &bwr) -> binder_ioctl_write_read() -> binder_thread_write()
binder_thread_write 方法
static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) {
uint32_t cmd;
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
while (ptr < end && thread->return_error == BR_OK) {
get_user(cmd, (uint32_t __user *)ptr); //获取命令
switch (cmd) {
case BC_ENTER_LOOPER:
//设置该线程的looper状态
thread->looper |= BINDER_LOOPER_STATE_ENTERED;
break;
case ...;
}
}
}
从bwr.write_buffer拿出cmd数据,此处为BC_ENTER_LOOPER. 可见上层本次调用binder_write()方法,主要是完成设置当前线程的looper状态为BINDER_LOOPER_STATE_ENTERED。
第四部分 Binder消息的处理
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
switch(cmd) {
case BR_NOOP: //无操作,退出循环
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
ptr += sizeof(struct binder_ptr_cookie);
break;
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
...
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
// 对 binder_io 进行初始化设置
bio_init(&reply, rdata, sizeof(rdata), 4);
//从txn解析并复制给binder_io信息
bio_init_from_txn(&msg, txn);
//
res = func(bs, txn, &msg, &reply);
// 向 binder 驱动通信
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
case BR_REPLY: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
...
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
}
ptr += sizeof(*txn);
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
ptr += sizeof(binder_uintptr_t);
// binder死亡消息
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
return -1;
}
}
return r;
}
binder_parse方法,先调用svcmgr_handler(),再然后执行binder_send_reply过程。该方法会调用binder_write进入binder驱动后,将BC_FREE_BUFFER和BC_REPLY命令协议发送给Binder驱动,向client端发送reply. 其中data的数据区中保存的是TYPE为HANDLE.
ServiceManager启动总结:
- 打开binder驱动,并调用binder.c 文件中的mmap()方法分配128k的内存映射空间:binder_open();
- 通知binder驱动使其成为守护进程:binder_become_context_manager();通过binder驱动中的binder_new_node()方法 创建 ServiceManager 对象实体类
- 验证selinux权限,判断进程是否有权注册或查看指定服务;
- 进入循环状态,等待Client端的请求:binder_loop()。
- 注册服务的过程,根据服务名称,但同一个服务已注册,重新注册前会先移除之前的注册信息;
- 死亡通知: 当binder所在进程死亡后,会调用binder_release方法,然后调用binder_node_release.这个过程便会发出死亡通知的回调.
--------------------------------------------------- 章节分割线 ---------------------------------------------------
Binder 的一些理解
Binder优点
通过看完上文的 Binder驱动中的工作,我们不妨找一下Binder为何能成为Android 进程交互中流砥柱。
暂且撇开Binder,考虑一下传统的IPC方式中,数据是怎样从发送端到达接收端的呢?通常的做法是,发送方将准备好的数据存放在缓存区中,调用API通过系统调用进入内核中。内核服务程序在内核空间分配内存,将数据从发送方缓存区复制到内核缓存区中。接收方读数据时也要提供一块缓存区,内核将数据从内核缓存区拷贝到接收方提供的缓存区中并唤醒接收线程,完成一次数据发送。这种存储-转发机制有两个缺陷:首先是效率低下,需要做两次拷贝:用户空间->内核空间->用户空间。Linux使用copy_from_user()和copy_to_user()实现这两个跨空间拷贝,在此过程中如果使用了高端内存(high memory),这种拷贝需要临时建立/取消页面映射,造成性能损失。其次是接收数据的缓存要由接收方提供,可接收方不知道到底要多大的缓存才够用,只能开辟尽量大的空间或先调用API接收消息头获得消息体大小,再开辟适当的空间接收消息体。两种做法都有不足,不是浪费空间就是浪费时间。
Binder采用一种全新策略:由Binder驱动负责管理数据接收缓存。我们注意到Binder驱动实现了mmap()系统调用,这对字符设备是比较特殊的,因为mmap()通常用在有物理存储介质的文件系统上,而象Binder这样没有物理介质,纯粹用来通信的字符设备没必要支持mmap()。Binder驱动当然不是为了在物理介质和用户空间做映射,而是用来创建数据接收的缓存空间。先看mmap()是如何使用的:
fd = open("/dev/binder", O_RDWR);
mmap(NULL, MAP_SIZE, PROT_READ, MAP_PRIVATE, fd, 0);
这样Binder的接收方就有了一片大小为MAP_SIZE的接收缓存区。mmap()的返回值是内存映射在用户空间的地址,不过这段空间是由驱动管理,用户不必也不能直接访问(映射类型为PROT_READ,只读映射)。
接收缓存区映射好后就可以做为缓存池接收和存放数据了。前面说过,接收数据包的结构为binder_transaction_data,但这只是消息头,真正的有效负荷位于data.buffer所指向的内存中。这片内存不需要接收方提供,恰恰是来自mmap()映射的这片缓存池。在数据从发送方向接收方拷贝时,驱动会根据发送数据包的大小,使用最佳匹配算法从缓存池中找到一块大小合适的空间,将数据从发送缓存区复制过来。要注意的是,存放binder_transaction_data结构本身以及表4中所有消息的内存空间还是得由接收者提供,但这些数据大小固定,数量也不多,不会给接收方造成不便。映射的缓存池要足够大,因为接收方的线程池可能会同时处理多条并发的交互,每条交互都需要从缓存池中获取目的存储区,一旦缓存池耗竭将产生导致无法预期的后果。
有分配必然有释放。接收方在处理完数据包后,就要通知驱动释放data.buffer所指向的内存区。在介绍Binder协议时已经提到,这是由命令BC_FREE_BUFFER完成的。
通过上面介绍可以看到,驱动为接收方分担了最为繁琐的任务:分配/释放大小不等,难以预测的有效负荷缓存区,而接收方只需要提供缓存来存放大小固定,最大空间可以预测的消息头即可。在效率上,由于mmap()分配的内存是映射在接收方用户空间里的,所有总体效果就相当于对有效负荷数据做了一次从发送方用户空间到接收方用户空间的直接数据拷贝,省去了内核中暂存这个步骤,提升了一倍的性能。顺便再提一点,Linux内核实际上没有从一个用户空间到另一个用户空间直接拷贝的函数,需要先用copy_from_user()拷贝到内核空间,再用copy_to_user()拷贝到另一个用户空间。为了实现用户空间到用户空间的拷贝,mmap()分配的内存除了映射进了接收方进程里,还映射进了内核空间。所以调用copy_from_user()将数据拷贝进内核空间也相当于拷贝进了接收方的用户空间,这就是Binder只需一次拷贝的‘秘密’。
Binder 中的线程管理
Binder通信实际上是位于不同进程中的线程之间的通信。假如进程S是Server端,提供Binder实体,线程T1从Client进程C1中通过Binder的引用向进程S发送请求。S为了处理这个请求需要启动线程T2,而此时线程T1处于接收返回数据的等待状态。T2处理完请求就会将处理结果返回给T1,T1被唤醒得到处理结果。在这过程中,T2仿佛T1在进程S中的代理,代表T1执行远程任务,而给T1的感觉就是象穿越到S中执行一段代码又回到了C1。为了使这种穿越更加真实,驱动会将T1的一些属性赋给T2,特别是T1的优先级nice,这样T2会使用和T1类似的时间完成任务。很多资料会用‘线程迁移’来形容这种现象,容易让人产生误解。一来线程根本不可能在进程之间跳来跳去,二来T2除了和T1优先级一样,其它没有相同之处,包括身份,打开文件,栈大小,信号处理,私有数据等。
对于Server进程S,可能会有许多Client同时发起请求,为了提高效率往往开辟线程池并发处理收到的请求。怎样使用线程池实现并发处理呢?这和具体的IPC机制有关。拿socket举例,Server端的socket设置为侦听模式,有一个专门的线程使用该socket侦听来自Client的连接请求,即阻塞在accept()上。这个socket就象一只会生蛋的鸡,一旦收到来自Client的请求就会生一个蛋 – 创建新socket并从accept()返回。侦听线程从线程池中启动一个工作线程并将刚下的蛋交给该线程。后续业务处理就由该线程完成并通过这个单与Client实现交互。
可是对于Binder来说,既没有侦听模式也不会下蛋,怎样管理线程池呢?一种简单的做法是,先创建一堆线程,每个线程都用BINDER_WRITE_READ命令读Binder。这些线程会阻塞在驱动为该Binder设置的等待队列上,一旦有来自Client的数据驱动会从队列中唤醒一个线程来处理。这样做简单直观,省去了线程池,但一开始就创建一堆线程有点浪费资源。于是Binder协议引入了专门命令或消息帮助用户管理线程池,包括:
· INDER_SET_MAX_THREADS // 设置最大线程数
· BC_REGISTER_LOOP // 注册
· BC_ENTER_LOOP // 进入
· BC_EXIT_LOOP // 退出
· BR_SPAWN_LOOPER // 通知线程即将不够使用,创建指令
首先要管理线程池就要知道池子有多大,应用程序通过INDER_SET_MAX_THREADS告诉驱动最多可以创建几个线程。以后每个线程在创建,进入主循环,退出主循环时都要分别使用BC_REGISTER_LOOP,BC_ENTER_LOOP,BC_EXIT_LOOP告知驱动,以便驱动收集和记录当前线程池的状态。每当驱动接收完数据包返回读Binder的线程时,都要检查一下是不是已经没有闲置线程了。如果是,而且线程总数不会超出线程池最大线程数,就会在当前读出的数据包后面再追加一条BR_SPAWN_LOOPER消息,告诉用户线程即将不够用了,请再启动一些,否则下一个请求可能不能及时响应。新线程一启动又会通过BC_xxx_LOOP告知驱动更新状态。这样只要线程没有耗尽,总是有空闲线程在等待队列中随时待命,及时处理请求。
关于工作线程的启动,Binder驱动还做了一点小小的优化。当进程P1的线程T1向进程P2发送请求时,驱动会先查看一下线程T1是否也正在处理来自P2某个线程请求但尚未完成(没有发送回复)。这种情况通常发生在两个进程都有Binder实体并互相对发时请求时。假如驱动在进程P2中发现了这样的线程,比如说T2,就会要求T2来处理T1的这次请求。因为T2既然向T1发送了请求尚未得到返回包,说明T2肯定(或将会)阻塞在读取返回包的状态。这时候可以让T2顺便做点事情,总比等在那里闲着好。而且如果T2不是线程池中的线程还可以为线程池分担部分工作,减少线程池使用率。
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ 以下为未完成篇幅
Binder 学习笔记 5
Binder 中服务注册流程
服务注册过程(addService)核心功能:在服务所在进程创建binder_node,在servicemanager进程创建binder_ref。 其中binder_ref的desc再同一个进程内是唯一的:
- 每个进程binder_proc所记录的binder_ref的handle值是从1开始递增的;
- 所有进程binder_proc所记录的handle=0的binder_ref都指向service manager;
- 同一个服务的binder_node在不同进程的binder_ref的handle值可以不同;
Media服务注册的过程涉及到MediaPlayerService(作为Client进程)和Service Manager(作为Service进程),通信流程图如下所示:
过程分析:
- MediaPlayerService进程调用ioctl()向Binder驱动发送IPC数据,该过程可以理解成一个事务binder_transaction(记为T1),执行当前操作的线程binder_thread(记为thread1),则T1->from_parent=NULL,T1->from = thread1,thread1->transaction_stack=T1。其中IPC数据内容包含:
- Binder协议为BC_TRANSACTION;
- Handle等于0;
- RPC代码为ADD_SERVICE;
- RPC数据为”media.player”。
Binder驱动收到该Binder请求,生成BR_TRANSACTION命令,选择目标处理该请求的线程,即ServiceManager的binder线程(记为thread2),则 T1->to_parent = NULL,T1->to_thread = thread2。并将整个binder_transaction数据(记为T2)插入到目标线程的todo队列;
Service Manager的线程thread2收到T2后,调用服务注册函数将服务”media.player”注册到服务目录中。当服务注册完成后,生成IPC应答数据(BC_REPLY),T2->form_parent = T1,T2->from = thread2, thread2->transaction_stack = T2。
Binder驱动收到该Binder应答请求,生成BR_REPLY命令,T2->to_parent = T1,T2->to_thread = thread1, thread1->transaction_stack = T2。 在MediaPlayerService收到该命令后,知道服务注册完成便可以正常使用。
整个过程中,BC_TRANSACTION和BR_TRANSACTION过程是一个完整的事务过程;BC_REPLY和BR_REPLY是一个完整的事务过程。