1、需求
无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。
2、输入数据
https://www.jianshu.com/p/2b9e10614724
3、分析
小文件的优化无非以下几种方式
(1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS
(2)在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
(3)在mapreduce处理时,可采用CombineTextInputFormat提高效率
4、具体实现
本节采用自定义InputFormat的方式,处理输入小文件的问题。
(1)自定义一个类继承FileInputFormat
(2)改写RecordReader,实现一次读取一个完整文件封装为KV
(3)在输出时使用SequenceFileOutPutFormat输出合并文件
5、程序实现:
(1)自定义InputFromat
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class WholeFileInputformat extends FileInputFormat<NullWritable, BytesWritable>{
@Override
protected boolean isSplitable(JobContext context, Path filename) {
return false;
}
@Override
public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
// 1 定义一个自己的recordReader
WholeRecordReader recordReader = new WholeRecordReader();
// 2 初始化recordReader
recordReader.initialize(split, context);
return recordReader;
}
}
(2)自定义RecordReader
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class WholeRecordReader extends RecordReader<NullWritable, BytesWritable> {
private FileSplit split;
private Configuration configuration;
private BytesWritable value = new BytesWritable();
private boolean processed = false;
@Override
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
// 获取传递过来的数据
this.split = (FileSplit) split;
configuration = context.getConfiguration();
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!processed) {
// 1 定义缓存
byte[] contents = new byte[(int) split.getLength()];
// 2 获取文件系统
Path path = split.getPath();
FileSystem fs = path.getFileSystem(configuration);
// 3 读取内容
FSDataInputStream fis = null;
try {
// 3.1 打开输入流
fis = fs.open(path);
// 3.2 读取文件内容
IOUtils.readFully(fis, contents, 0, contents.length);
// 3.3 输出文件内容
value.set(contents, 0, contents.length);
} catch (Exception e) {
} finally {
IOUtils.closeStream(fis);
}
processed = true;
return true;
}
return false;
}
@Override
public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
}
@Override
public BytesWritable getCurrentValue() throws IOException, InterruptedException {
return value;
}
@Override
public float getProgress() throws IOException, InterruptedException {
return processed?1:0;
}
@Override
public void close() throws IOException {
}
}
(3)InputFormatDriver处理流程
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
public class InputFormatDriver {
static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
private Text k = new Text();;
@Override
protected void map(NullWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException {
// 获取切片信息
InputSplit split = context.getInputSplit();
// 获取切片路径
Path path = ((FileSplit) split).getPath();
// 根据切片路径获取文件名称
k.set(path.toString());
// 文件名称为key
context.write(k, value);
}
}
public static void main(String[] args) throws Exception {
args = new String[] { "e:/inputinputformat", "e:/output1" };
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(InputFormatDriver.class);
job.setMapperClass(SequenceFileMapper.class);
job.setNumReduceTasks(0);
job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}