黑猴子的家:MapReduce 小文件处理(自定义InputFormat)

1、需求

无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。

2、输入数据

https://www.jianshu.com/p/2b9e10614724

3、分析

小文件的优化无非以下几种方式
(1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS
(2)在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
(3)在mapreduce处理时,可采用CombineTextInputFormat提高效率

4、具体实现

本节采用自定义InputFormat的方式,处理输入小文件的问题。
(1)自定义一个类继承FileInputFormat
(2)改写RecordReader,实现一次读取一个完整文件封装为KV
(3)在输出时使用SequenceFileOutPutFormat输出合并文件

5、程序实现:

(1)自定义InputFromat

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

public class WholeFileInputformat extends FileInputFormat<NullWritable, BytesWritable>{

    @Override
    protected boolean isSplitable(JobContext context, Path filename) {
        return false;
    }
    
    @Override
    public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        // 1 定义一个自己的recordReader
        WholeRecordReader recordReader = new WholeRecordReader();
        
        // 2 初始化recordReader
        recordReader.initialize(split, context);
        
        return recordReader;
    }
}

(2)自定义RecordReader

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class WholeRecordReader extends RecordReader<NullWritable, BytesWritable> {
    private FileSplit split;
    private Configuration configuration;

    private BytesWritable value = new BytesWritable();
    private boolean processed = false;

    @Override
    public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
        // 获取传递过来的数据
        this.split = (FileSplit) split;
        configuration = context.getConfiguration();
    }

    @Override
    public boolean nextKeyValue() throws IOException, InterruptedException {
        
        if (!processed) {
            // 1 定义缓存
            byte[] contents = new byte[(int) split.getLength()];

            // 2 获取文件系统
            Path path = split.getPath();
            FileSystem fs = path.getFileSystem(configuration);

            // 3 读取内容
            FSDataInputStream fis = null;
            try {
                // 3.1 打开输入流
                fis = fs.open(path);
                
                // 3.2 读取文件内容
                IOUtils.readFully(fis, contents, 0, contents.length);
                
                // 3.3 输出文件内容
                value.set(contents, 0, contents.length);
            } catch (Exception e) {

            } finally {
                IOUtils.closeStream(fis);
            }
            
            processed = true;
            
            return true;
        }
        
        return false;
    }

    @Override
    public NullWritable getCurrentKey() throws IOException, InterruptedException {
        
        return NullWritable.get();
    }

    @Override
    public BytesWritable getCurrentValue() throws IOException, InterruptedException {
        
        return value;
    }

    @Override
    public float getProgress() throws IOException, InterruptedException {
        return processed?1:0;
    }

    @Override
    public void close() throws IOException {

    }
}

(3)InputFormatDriver处理流程

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
public class InputFormatDriver {

    static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
        private Text k = new Text();;

        @Override
        protected void map(NullWritable key, BytesWritable value, Context context)
                throws IOException, InterruptedException {

            // 获取切片信息
            InputSplit split = context.getInputSplit();

            // 获取切片路径
            Path path = ((FileSplit) split).getPath();

            // 根据切片路径获取文件名称
            k.set(path.toString());

            // 文件名称为key
            context.write(k, value);
        }
    }

    public static void main(String[] args) throws Exception {

        args = new String[] { "e:/inputinputformat", "e:/output1" };

        Configuration conf = new Configuration();
        
        Job job = Job.getInstance(conf);
        job.setJarByClass(InputFormatDriver.class);
        job.setMapperClass(SequenceFileMapper.class);

        job.setNumReduceTasks(0);

        job.setInputFormatClass(WholeFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BytesWritable.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

6、Code -> GitHub

https://github.com/liufengji/hadoop_mapreduce.git

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容