深度学习框架对比

原地址:https://www.leiphone.com/news/201702/T5e31Y2ZpeG1ZtaN.html

目前主流的的深度学习框架

主流深度学习框架包括Tensorflow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、Deeplearning4、Lasagne、Neon等等。
各个开源框架在 GitHub 上的数据统计
目前主流的深度学习平台均支持Python接口。
可以看出其中Tensorflow在关注度和用户数上占据绝对优势。这里简单介绍下Tensorflow平台。

Tensorflow

  • 高阶机器学习库,核心代码用C++实现,核心代码提供C++接口,具有Python、Go、Java接口,通过SWIG实现。
  • 支持自动求导。
  • TensorFlow 也有内置的 TF.Learn 和 TF.Slim 等上层组件可以帮助快速地设计新网络,并且兼容 Scikit-learn estimator 接口,可以方便地实现 evaluate、grid search、cross validation 等功能
  • 数据并行模式

TensorFlow 有独立的 Variable node,不像其他框架有一个全局统一的参数服务器,因此参数同步更自由。

  • 灵活的移植性

可以将同一份代码几乎不经过修改就轻松地部署到有任意数量 CPU 或 GPU 的 PC、服务器或者移动设备上。

  • 极快的编译速度
  • 可视化组件:TensorBoard

TensorBoard 是 TensorFlow 的一组 Web 应用,用来监控 TensorFlow 运行过程,或可视化 Computation Graph。TensorBoard 目前支持五种可视化:标量(scalars)、图片(images)、音频(audio)、直方图(histograms)和计算图(Computation Graph)。TensorBoard 的 Events Dashboard 可以用来持续地监控运行时的关键指标,比如 loss、学习速率(learning rate)或是验证集上的准确率(accuracy);Image Dashboard 则可以展示训练过程中用户设定保存的图片,比如某个训练中间结果用 Matplotlib 等绘制(plot)出来的图片;Graph Explorer 则可以完全展示一个 TensorFlow 的计算图,并且支持缩放拖曳和查看节点属性。

  • 异构性:支持多种硬件平台和操作系统
  • 分布式:16块GPU达到单块GPU的15倍性能,分布式通信基于socket的RPC,而不是速度更快的RDMA
  • TensorFlow Serving:提供模型的导出功能,并部署成对外提供预测服务的RESTful接口。有了这个组件,TensorFlow 就可以实现应用机器学习的全流程:从训练模型、调试参数,到打包模型,最后部署服务.

TensorFlow Serving 是一个为生产环境而设计的高性能的机器学习服务系统。它可以同时运行多个大规模深度学习模型,支持模型生命周期管理、算法实验,并可以高效地利用 GPU 资源,让 TensorFlow 训练好的模型更快捷方便地投入到实际生产环境

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容