数据分析系列——分析方法

一个完整的数据工作流包括了:数据采集-->--指标建模-->观测数据>数据分析-->业务洞察

这是一个从业务中来到业务中去的过程,如何实现业务目标就是指标建模的依据,当拿到各种数据,需要对业务有深刻的认知,才能分析出对业务有价值的结论,以此回到业务目标的实现中去。

而数据分析就是透过工具观测数据后,发现异常数据或趋势规律,透过一系列分析方法和对业务的了解,从而解决业务问题和挖掘业务机会。

很多的数据分析报告只做到观测数据这一步,往往列出了一堆交易额下跌了40%留存剩下7%这样的数值,但是造成这些趋势变化的原因和主要构成是什么,针对下跌要对业务做怎样的调整,这才是数据分析的意义所在。


我们把分析方法总结为以下几种:

一、对比分析

在趋势中,我们经常拿特殊和常规对比,但特殊不代表异常,怎样对比才是真正的学问所在

问题1,比什么

绝对值:销售额、阅读数(缺点是不容易得知问题的严重程度)

比例值:活跃占比、注册转化率(缺点是受极端值影响)

问题2,怎么比

·环比:与当前时间范围相邻的上一个时间范围对比;例如,9月7的日环比是9月6的数据;日环比(今天vs昨天)月环比(本月vs上月)

主要对短期内具备连续性对数据分析对比,例如一个持续几天的活动,环比看活动是不是越做越好

·同比:与当前时间范围上层时间范围的前一范围中同样位置数据对比;例如,9月7的同比是8月7的数据;年同比(今天vs去年今日)周同比(今日vs上周同日)

主要用于观察长期的数据集,例如产品上线两年,同比看两年产品发展得怎样

问题3,和谁比

·和自己比:时间维度(和往期或平时比)、业务维度(和不同业务线比)

·和行业比:跌多少?涨多少?

最后,做对比分析有个细节点,就是注意消除特殊情况的干扰,例如节庆,节假日用户受出行影响而减少上网行为,这就是典型的全网存在的特殊情况。


二、多维度拆解分析

简单说,就是从不同的视角去理解同一个数据指标,来发现这个指标围绕的业务现象,例如启动数,可以从区域、人群、时间等各个维度观察启动数的变化对比,又例如订单转化,可以从渠道来源、地区、设备等维度观察,你可能会发现1000的启动数原来80%都来自一线城市20岁出头的小姐姐那,其中订单转化率高的都是苹果手机用户,这么一个有趣的现象。

运作原理:指标/业务流程按照多个维度拆分来观察变动

往往有以下几种适用场景:

·分析单一指标的构成和比例时:从这个指标的构成因素入手分析

·针对流程拆解分析:从流程各个入口和漏斗走向入手分析

·还原行为发生的场景:从发生行为的对象、发生过程和发生环境入手分析

此分析方法,最常在发现数据异动时使用,例如销量悬崖式下降,可利用对流程的整体拆解,从每个节点调查问题所在,到底是最源头的渠道推广那断交水费了?还是后方某条供应链断货而导致?


三、漏斗分析

关键1、漏斗路径的设计,因为漏斗是一系列行为的集合,需要清晰设计包含了该行为的各个路径及其顺序,例如多个推广入口,某活动的路径设计:活动首页--参加报名页--支付--结果页,结果运营某个线下推广却是直达参加报名页,导致漏斗数据对不上。

关键2、时间窗口的设计,某些极端情况是因为漏斗是整个行为流,会出现跨窗口完成的情况,需要根据业务情况补回去这部分缺口,或者决策时间很长等

关键3、面向对象的设计,是想分析人还是事?


四、分布分析

就是观察一个事件在不同维度的分布情况,从而分析该事件所启示的业务规律,挖掘针对性的业务策略。

例如视频的播放频率分布,每天播放0-5次的人数占比和6-10次的人数占比情况如何。

常见的划分有:

·次数分布

·时间分布

·金额分布


五、留存分析

除了做大盘留存的分析,我之前的文章“数据分析系列-常规指标”有做这部分的分享

我们有时候需要做精准留存的分析,也就是定位到特殊用户群体的留存分析,一般包括:

·分群体看,这根据业务需求对自身用户划分

·过滤掉指定行为的用户后,再看留存,例如过滤掉完全没消费过的用户后看其他用户的留存情况。


六、用户画像分析

简单来说,就是对用户拆行为、拆群体、打标签的分析

此分析一般是对阶段性业务发展或活动推广作前置依据作用,有时候需要配合用户调研一起完成。

高效的分析方式是,从核心用户群体下手,指高留存、核心行为完成率高的用户,透析出此类用户的核心特征,包括他们的行为属性、社会属性、营销属性等,那符合特征的类似用户,就可以作为业务发展潜在高质量用户的参考了。


七、路径分析

产品经理经常会用到的分析方法,需要配合特定的路径分析工具完成,如下图

分析思路紧抓住两点就好:

·往后看:有明确都起始场景,我们可以往后观察用户后面的流向。

·往前看:有明确的结果目标,希望了解用户是怎么来到目标场景的流向。

从路径分析可以了解各个事件的关联关系,从而制定产品优化方案或运营策略调整。


八、行为序列分析

分析单一用户的使用情况

这种分析方法适合用在以下场景

·2b业务中挖掘精准销售线索时,因为2b业务访问产品的用户不会很多,可以根据单独每个用户的使用时长、频率、是否达成了关键行为目标,以判断是否销售可能性比较高的客户,筛选出来后作为高质销售线索跟进

·产品设计决策时,有很多假设需要在真正投入完整开发前验证需求是否真实存在,透过观

察目标测试用户的使用行为序列,可验证需求真实性甚至有可能发现阻碍需求实现的真实情况。

·找作弊行为,例如刷量、蓐羊毛、spam,通过一个作弊行为的用户,观察其行为序列,找到作弊模式后,排除同类行为的用户。


还有很多的分析方法,但最主要的还是对业务和用户的深刻理解,通过实践逐步积累经验,锻炼数据分析的结构性思维,持续学习掌握新的技能。

希望分享对大家的运营和产品工作有帮助,欢迎各种补充和指正。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容