电商案例复盘

一、项目背景:

唯品会是一个专门做特卖的网站,什么是特卖呢。特卖一般是指在特定的时间段里,以优惠的价格出售指定的商品,一般以商城或者专卖店为多。该模式在线下早已存在(比如商场促销、街边的尾货甩卖),在国外成熟的大商场内也有针对滞销商品的打折特卖,如奥特莱斯。特卖一般是商家清库存,不过也有一些专门生产商品做特卖的商家。 特卖行业也是有个真实存在的产业链,只是因为快速分销渠道,地理位置等关系,大多数都集中在一线城市,部分生活在一线城市的都基本或多或少去过几次各个品牌的特卖仓,但是二三线甚至四五线城市的就比较难接触到,后来就有一群人成了品牌搬运工,和各大品牌联系通过微信等渠道快速分销大牌库存,达到快速低价消除库存,加快周转回笼资金等目的。在货源上,由于品牌尾货具备天然的清仓需求,是折扣零售最常见的货源,但实际上,只要成本足够低,新品首发、定制包销、自有品牌均可以成为折扣特卖零售的可持续货源。成立初期,唯品会货源以尾货为主,但随着唯品会在电商领域的不断发展,新品和专供品的占比不断提升,早在 2016 年 Q2 分析中,唯品会当季新品和平台特供品就已经占 37%了。

二、此次分析的目标:

评估每次促销活动的结果,并根据情况优化商品结构,以便让自己的商品卖的更好。
分析流程:
1、总体运营指标
2、从价格区间找出表现不好的产品,优化商品结构
3、从折扣区间来找出表现不好的产品,优化商品结构

三、操作流程:

1.读取各部分数据集

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import sqlalchemy

engine = sqlalchemy.create_engine(

# 商品信息表
sql_cmd = "select * from sales_info1"

# 执行sql语句,获取数据
dt1 = pd.read_sql(sql=sql_cmd, con=engine)
#重命名列名
dt1.rename(columns={"sale_name":"商品名",
                    "sale_price":"售卖价",
                    "tag_price":"吊牌价",
                    "discout":"折扣率",
                    "stocks":"库存量",
                    "stocks_value":"货值",
                    "cost_price":"成本价",
                    "profit_rate":"利润率",
                    "skus":"SKU"},
          inplace=True)

dt1.head()
# 读取数据
# 商品信息表
sql_cmd = "select * from sales_info3"

# 执行sql语句,获取数据
dt3 = pd.read_sql(sql=sql_cmd, con=engine)

dt3.rename(columns={"user_id":"用户id",
                    "buy_date":"购买日期",
                    "sale_name":"商品名",
                    "buy_cons":"购买数量",
                    "buy_price":"购买单价",
                    "cost_price":"购买金额",
                    "is_tui":"是否退货",
                    "tui_cons":"退货件数",
                    "tui_price":"退货金额"},
          inplace=True)

dt3['是否退货']=dt3["是否退货"].map({"是":1,"否":0})
dt3.head()
···
```# 统计每个商品的一个销售情况

product_sales = dt3.groupby("商品名").agg({"购买数量":"sum",
                                                 "购买金额":"sum",
                                                 "退货件数":"sum",
                                                 "退货金额":"sum",
                                                 "购买单价":"mean",
                                                 "用户id":pd.Series.nunique}).reset_index()
product_sales.rename(columns={"购买数量":"商品销售数量",
                              "购买金额":"商品销售金额",
                              "是否退货":"商品退货数量",
                              "退货金额":"商品退货金额",
                              "购买单价":"商品销售单价",
                              "用户id":"购买用户数量"},inplace=True)
product_sales.head()
dt_product_sales = dt_product.merge(product_sales,how="left",on="商品名")
dt_product_sales.head()

1、总体运营情况评价

总体运营部分,主要关注销售额、售卖比、UV、转化率等指标,其他指标作为辅助指标。销售额用来和预期目标做对比,售卖比用来看商品流转情况。

  • GMV:销售额,在唯品会里称为到手价。
  • 实销:GMV – 拒退金额。
  • 销量:累计销售量(含拒退)。
  • 客单价:GMV / 客户数,客单价与毛利率息息相关,一般客单价越高,毛利率越高。
  • UV:商品所在页面的独立访问数。
  • 转化率:客户数 / UV。
  • 折扣率:GMV / 吊牌总额(吊牌总额 = 吊牌价 * 销量),在日常工作中,吊牌额是必不可少的。
  • 备货值:吊牌价 * 库存数。
  • 售卖比:又称售罄率,GMV / 备货值。
  • 收藏数:收藏某款商品的用户数量。
  • 加购数:加购物车人数。
  • SKU数:促销活动中的SKU计数(一般指货号)。
  • SPU数:促销活动中的SPU计数(一般指款号)。
  • 拒退量:拒收和退货的总数量。
  • 拒退额:拒收和退货的总金额。
#1、GMV:销售额,包含退货的金额
gmv = dt_product_sales["商品销售金额"].sum()
#2、实际销售额=GMV - 退货金额
return_sales = dt_product_sales["商品退货金额"].sum()
return_money = gmv - return_sales
#3、销量:累计销售量(含拒退)
all_sales = dt_product_sales["商品销售数量"].sum()
#4、客单价:GMV / 客户数,客单价与毛利率息息相关,一般客单价越高,毛利率越高。
# dt3.user_id.unique().count()
custom_price = gmv / dt_product_sales["购买用户数量"].sum()
# 5、UV:商品所在页面的独立访问数
uv_cons = dt_product_sales["UV数"].sum()
# 6、转化率:客户数 / UV。
uv_rate = dt_product_sales["购买用户数量"].sum() / dt_product_sales["UV数"].sum()
# 7、折扣率:GMV / 吊牌总额(吊牌总额 = 吊牌价 * 销量),在日常工作中,吊牌额是必不可少的。
tags_sales = np.sum(dt_product_sales["吊牌价"] * dt_product_sales["商品销售数量"])
discount_rate= gmv / tags_sales 
# 8、备货值:吊牌价 * 库存数。
goods_value = dt_product_sales["货值"].sum()
# 9、售卖比:又称售罄率,GMV / 备货值。
sales_rate = gmv / goods_value
# 10、收藏数:收藏某款商品的用户数量。
coll_cons = dt_product_sales["收藏数"].sum()
# 11、加购数:加购物车人数。
add_shop_cons = dt_product_sales["加购物车数"].sum()
# 12、SKU数:促销活动中的最小品类单元(一般指货号)。
sku_cons = dt_product_sales["SKU"].sum()
# 13、SPU数:促销活动中的SPU计数(一般指款号)。
spu_cons = len(dt_product_sales["商品名"].unique())
# 14、拒退量:拒收和退货的总数量。退货件数
reject_cons = dt_product_sales["退货件数"].sum()
# 15、拒退额:拒收和退货的总金额。
reject_money = dt_product_sales["商品退货金额"].sum()
# 汇总统计
sales_state_dangqi = pd.DataFrame(
    {"GMV":[gmv,],"实际销售额":[return_money,],"销量":[all_sales,],"客单价":[custom_price,],
     "UV数":[uv_cons,],"UV转化率":[uv_rate,],"折扣率":[discount_rate,],"货值":[goods_value,],
     "售卖比":[sales_rate,],"收藏数":[coll_cons,],"加购数":[add_shop_cons,],"sku数":[sku_cons,],
     "spu数":[spu_cons,],"拒退量":[reject_cons,],"拒退额":[reject_money,],}, 
    ) #index=["今年双11",]

# 去年的数据是已经统计好了的,不需要计算(写死的内容)
sales_state_tongqi = pd.DataFrame(
    {"GMV":[2261093,],"实际销售额":[1464936.517,],"销量":[7654,],"客单价":[609.34567,],
     "UV数":[904694,],"UV转化率":[0.0053366,],"折扣率":[0.46,],"货值":[12610930,],
     "售卖比":[0.1161,],"收藏数":[4263,],"加购数":[15838,],"sku数":[82,],
     "spu数":[67,],"拒退量":[2000,],"拒退额":[651188.57,],}, 
    ) #index=["去年双11",]

#sales_state = pd.concat([sales_state_dangqi, sales_state_tangqi])
sales_state_dangqi_s = pd.DataFrame(sales_state_dangqi.stack()).reset_index().iloc[:,[1,2]]
sales_state_dangqi_s.columns = ["指标","今年双11"]
sales_state_tongqi_s = pd.DataFrame(sales_state_tongqi.stack()).reset_index().iloc[:,[1,2]]
sales_state_tongqi_s.columns = ["指标","去年双11"]
sales_state = pd.merge(sales_state_dangqi_s, sales_state_tongqi_s,on="指标")
sales_state["同比"] = (sales_state["今年双11"] - sales_state["去年双11"]) / sales_state["去年双11"]
sales_state
fdbbez.png

2、从价格区间来优化商品结构

我们需要做的是,深入探究不同区间的数据,以此来优化后期的促销结构。首先我们需要找到在本次促销中此区间的销售源数据,源数据要求显示具体的款号、销售额、销量等信息。第二步,计算出每个款的转化率、折扣率等数据。

查看指标:

  • 销售额
  • 销量
  • 件单价
  • 客户数
  • UV
  • 转换率
  • 库存
  • 货值
  • 售卖比
# 划分价格区间段
#设置切分区域
listBins = [0,200, 400, 100000]

#设置切分后对应标签
listLabels = ['1_200','200_400','400及以上']

#利用pd.cut进行数据离散化切分,注意分组标签和分组数要一致
"""
pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)
x:需要切分的数据
bins:切分区域
right : 是否包含右端点默认True,包含
labels:对应标签,用标记来代替返回的bins,若不在该序列中,则返回NaN
retbins:是否返回间距bins
precision:精度
include_lowest:是否包含左端点,默认False,不包含
"""
dt_product_sales['价格分组'] = pd.cut(dt_product_sales['售卖价'], bins=listBins, labels=listLabels, include_lowest=True)
dt_product_sales.head()

价格区间销售情况统计

  • 价格区间
  • 货值
  • 货值占比
  • 销售额
  • 售卖比
  • 销售占比
  • 销量
  • 客单价
  • UV
  • 收藏数
  • 加购数
  • 转化率
# 货值占比、销售占比、客单价、转化率  后面求
dt_product_sales_info = dt_product_sales.groupby("价格分组").agg({
                                        "货值":"sum",
                                        "商品销售金额":"sum",
                                        "商品销售数量":"sum",
                                        "UV数":"sum",
                                        "购买用户数量":"sum",
                                        "收藏数":"sum",
                                        "加购物车数":"sum"
                                        }).reset_index()
dt_product_sales_info.head()

货值占比、销售占比、客单价、转化率

dt_product_sales_info["货值占比"]=dt_product_sales_info["货值"]/dt_product_sales_info["货值"].sum()
dt_product_sales_info["销售占比"]=dt_product_sales_info["商品销售金额"]/dt_product_sales_info["商品销售金额"].sum()
dt_product_sales_info["客单价"]=dt_product_sales_info["商品销售金额"]/dt_product_sales_info["购买用户数量"]
dt_product_sales_info["转化率"]=dt_product_sales_info["购买用户数量"]/dt_product_sales_info["UV数"]

dt_product_sales_info.head()

```# 取出400及以上价格区间的数据内容
product_400 = dt_product_sales[dt_product_sales["价格分组"]=='400及以上']
product_400.head()

计算商品指标

  • 销售额
  • 销量
  • 件单价
  • 客户数
  • UV
  • 转换率=客户数 / UV
  • 库存
  • 备货值=吊牌价 * 库存数
  • 售卖比=又称售罄率,GMV / 备货值
# 转换率=客户数 / UV
product_400['转换率'] = product_400["购买用户数量"]/product_400["UV数"]
# 备货值=吊牌价 * 库存数
product_400["备货值"] = product_400["吊牌价"]*product_400["库存量"]
product_400.head()
# 售卖比=又称售罄率,GMV / 备货值
product_400["售卖比"] = product_400["商品销售金额"]/product_400["备货值"]
product_400.head()
product_400[["商品名","商品销售金额","商品销售数量","商品销售单价","购买用户数量","UV数",'转换率',"库存量","备货值","售卖比"]]

优化方案:

转化率大于0.7%的商品,暂时保留,用于下次促销活动;
转化率小于0.7%的商品,但是售卖比大于36%的商品予以保留参加下次促销活动,
转化率小于0.7%的商品,并且售卖比小于36%的商品进行清仓处理。

# 挑选合格的商品:
# 1、保留商品:转化率大于0.7%的商品予以保留
stay_stocks571 = product_400[product_400["转换率"]>0.007]
stay_stocks571
2.1.png
# 2、保留商品:找出转化率小于0.7% 但是 售卖比大于36%的部分予以保留
stay_stocks573 = product_400[(product_400["售卖比"]>=0.36)&(product_400["转换率"]<0.007)]
stay_stocks573
# 3、清仓处理商品,找出转化率小于0.7%并且售卖比小于36%的部分
stay_stocks574 = product_400[(product_400["售卖比"]<0.36)&(product_400["转换率"]<0.007)]
stay_stocks574
2.3.png

3、从折扣区间来优化商品结构
同样地,我们选择0.35-0.4折扣区间进行深入探究。dt_product_discount_info表中,我们可以得到0.35-0.4折扣区间的售卖比为16.90%,转化率为0.53%,折扣率为37%,在进行商品结构优化的时候要着重对比这几个指标。

# 划分价格区间段
#设置切分区域
listBins = [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 1]

#设置切分后对应标签
listLabels = ['0.15_0.2','0.2_0.25','0.25_0.3','0.3_0.35','0.35_0.4','0.4_0.45','0.45_0.5','0.5_0.55','0.55_0.6','0.6_0.65','0.65_0.7','0.7_1']

#利用pd.cut进行数据离散化切分,注意分组标签和分组数要一致
"""
pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)
x:需要切分的数据
bins:切分区域
right : 是否包含右端点默认True,包含
labels:对应标签,用标记来代替返回的bins,若不在该序列中,则返回NaN
retbins:是否返回间距bins
precision:精度
include_lowest:是否包含左端点,默认False,不包含
"""
dt_product_sales['折扣区间'] = pd.cut(dt_product['折扣率'], bins=listBins, labels=listLabels, include_lowest=True)
dt_product_sales.head()

折扣区间销售情况统计

  • 价格区间
  • 货值
  • 货值占比
  • 销售额
  • 售卖比
  • 销售占比
  • 销量
  • 客单价
  • UV
  • 收藏数
  • 加购数
  • 转化率
# 货值占比、销售占比、客单价、转化率  后面求
dt_product_discount_info = dt_product_sales.groupby("折扣区间").agg({
                                        "货值":"sum",
                                        "商品销售金额":"sum",
                                        "商品销售数量":"sum",
                                        "UV数":"sum",
                                        "购买用户数量":"sum",
                                        "收藏数":"sum",
                                        "加购物车数":"sum"
                                        }).reset_index()
dt_product_discount_info
# 货值占比、销售占比、客单价、转化率  后面求
dt_product_discount_info["货值占比"]=dt_product_discount_info["货值"]/dt_product_discount_info["货值"].sum()
dt_product_discount_info["销售占比"]=dt_product_discount_info["商品销售金额"]/dt_product_discount_info["商品销售金额"].sum()
dt_product_discount_info["客单价"]=dt_product_discount_info["商品销售金额"]/dt_product_discount_info["购买用户数量"]
dt_product_discount_info["转化率"]=dt_product_discount_info["购买用户数量"]/dt_product_discount_info["UV数"]
# 取出0.35-0.4价格区间的数据内容
product_354 = dt_product_sales[dt_product_sales["折扣区间"]=='0.35_0.4']
product_354.head()
#计算商品指标
*   销售额
*   销量
*   件单价
*   客户数
*   UV
*   转换率=客户数 / UV
*   库存
*   货值=吊牌价 * 库存数
*   售卖比=又称售罄率,GMV / 备货值
# 转换率=客户数 / UV
product_354['转换率'] = product_354["购买用户数量"]/product_354["UV数"]
# 备货值=吊牌价 * 库存数
product_354["备货值"] = product_354["吊牌价"]*product_354["库存量"]
# 售卖比=又称售罄率,GMV / 备货值
product_354["售卖比"] = product_354["商品销售金额"]/product_354["备货值"]
product_354.head()
product_354[["商品名","商品销售金额","商品销售数量","商品销售单价","购买用户数量","UV数","库存量","备货值","折扣率","售卖比",'转换率']]

优化结果:
折扣率大于37%的部分找出售卖比大于36.5%且转化率大于0.7%的商品予以保留,其余进行清仓处理;

折扣率小于37%的部分找出售卖比大于36.5%且转化率大于0.7%的部分予以保留,其余进行清仓处理。

# 挑选合格的商品:
# 1、保留商品:折扣率大于37%的部分找出售卖比大于36.5%且转化率大于0.7%的商品予以保留
stay_stocks1 = product_354[(product_354["折扣率"]>0.37)&(product_354["售卖比"]>0.365)&(product_354["转换率"]>0.007)]
3.1.png
# 2、清仓处理商品,不满足条件的:折扣率大于37%的部分找出售卖比小于36.5%或转化率小于0.7%的商品
# 取反即可
stay_stocks2 = product_354[(product_354["折扣率"]>=0.37)&((product_354["售卖比"]<=0.365)|(product_354["转换率"]<=0.007))]
stay_stocks2
3.2.png
# 挑选合格的商品:
# 3、保留商品:在折扣率小于37%的部分找出售卖比大于36.5%且转化率大于0.7%的部分予以保留
stay_stocks3 = product_354[(product_354["折扣率"]<=0.37)&(product_354["转换率"]>0.007)&(product_354["售卖比"]>0.365)] 
stay_stocks3
3.3.png
# 4、清仓处理商品,不满足此条件的:在折扣率小于37%的部分找出售卖比小于36.5%或转化率小于0.7%的部分
# 取反即可
stay_stocks4 = product_354[((product_354["折扣率"]<0.37) & ((product_354["售卖比"]<0.365)|(product_354["转换率"]<0.007)))]
stay_stocks4
3.4.png

优化结果:

折扣率大于37%的部分找出售卖比大于36.5%且转化率大于0.7%的商品予以保留,其余进行清仓处理;

折扣率小于37%的部分找出售卖比大于36.5%且转化率大于0.7%的部分予以保留,其余进行清仓处理。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • 一、项目背景 唯品会是一家著名电商平台,有大量特卖商品,即指在特定的时间段里,以优惠的价格出售指定的商品。 二、分...
    chen_5614阅读 2,038评论 0 1
  • 一、项目概述 唯品会是一个专门做特卖的网站(特卖一般是指在特定的时间段里,以优惠的价格出售指定的商品)。本文是对唯...
    kh辰辰辰阅读 198评论 0 0
  • 一、项目背景介绍: 百川是一家电商公司,运营日常需要复盘活动效果,了解运营情况。 二、分析目标: 评估每次促销活动...
    十一吖_cb39阅读 997评论 0 2
  • 本文将进行电商唯品会商品的复盘问题,在此将会按照数据分析的流程进行以下操作: 1.目标确定: 1.1 背景介绍 唯...
    许瀚阅读 1,481评论 0 2
  • 最近做的项目是唯品会的促销案例复盘,主要是用jupyter notebook,使用python的pandas和nu...
    且听风吟92阅读 562评论 0 0