代码随想录算法训练营第41天 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

第九章 动态规划part08

121. 买卖股票的最佳时机

文章讲解

思路

  • 贪心的解法:
class Solution {
    public int maxProfit(int[] prices) {
        // 找到一个最小的购入点
        int low = Integer.MAX_VALUE;
        // res不断更新,直到数组循环完毕
        int res = 0;
        for(int i = 0; i < prices.length; i++){
            low = Math.min(prices[i], low);
            res = Math.max(prices[i] - low, res);
        }
        return res;
    }
}
  • 动态规划
  1. 确定dp数组(dp table)以及下标的含义
    dp[i][0] 表示第i天持有股票所得最多现金 ,dp[i][1] 表示第i天不持有股票所得最多现金

  2. 确定递推公式
    如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

    • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
    • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
    • 那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

    如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

    • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
    • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
    • 同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
  3. dp数组如何初始化
    由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出其基础都是要从dp[0][0]和dp[0][1]推导出来。
    那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
    dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

  4. 确定遍历顺序
    从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

  5. 举例推导dp数组
    以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:


    image.png
class Solution {
    public int maxProfit(int[] prices) {
        //版本1
        int len = prices.length;
        if(prices == null || len == 0) return 0;

        // dp[i][0]代表第i天持有股票的最大收益
        // dp[i][1]代表第i天不持有股票的最大收益
        int[][] dp = new int[len][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < len; i++){
            dp[i][0] = Math.max(dp[i-1][0], -prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], prices[i] + dp[i-1][0]);
        }
        return dp[len-1][1];
    }
}

从递推公式可以看出,dp[i]只是依赖于dp[i - 1]的状态。

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了,可以使用滚动数组来节省空间
i % 2 的作用是用来在 dp 数组的两行之间切换,使得我们能够复用数组空间。例如:

  • i 为偶数时,i % 2 为 0,表示使用 dp 数组的第 0 行来存储第 i 天的状态。
  • i 为奇数时,i % 2 为 1,表示使用 dp 数组的第 1 行来存储第 i 天的状态。

这样,我们就可以使用 dp[0]dp[1] 两行来分别存储当前和前一天的状态,达到节省空间的目的。

class Solution {
    public int maxProfit(int[] prices) {
        //版本1
        int len = prices.length;
        if(prices == null || len == 0) return 0;

        // dp[i][0]代表第i天持有股票的最大收益
        // dp[i][1]代表第i天不持有股票的最大收益
        int[][] dp = new int[2][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < len; i++){
            dp[i % 2][0] = Math.max(dp[(i-1) % 2][0], -prices[i]);
            dp[i % 2][1] = Math.max(dp[(i-1) % 2][1], prices[i] + dp[(i-1) % 2][0]);
        }
        return dp[(len-1) % 2][1];
    }
}

122.买卖股票的最佳时机II

文章讲解

思路
dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金
    注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况
  • 本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
    那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
    再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
    • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
    • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
class Solution {
    public int maxProfit(int[] prices) {
        int[] dp = new int[2];
        // 0代表持有,1代表卖出
        dp[0] = -prices[0];
        dp[1] = 0;
        for(int i = 1; i <= prices.length; i++){
            //第i天持有; 或前一天持有(前一天持有的话,之前就是卖出的状态,就要用dp[1]减去前一天的价格)
            dp[0] = Math.max(dp[0], dp[1] - prices[i - 1]);
            //第i天卖出;或前一天卖出(前一天卖出的话,先前就是持有的状态,再加上前一天的收益)
            dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
        }
        return dp[1]; //二维数组应该返回length-1,但是这里改了for循环里 i <= prices.length
    }
}

123.买卖股票的最佳时机III

这道题一下子就难度上来了,关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
文章讲解

思路

  • 关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
  1. 确定dp数组以及下标的含义
    一天一共就有五个状态,

    • 没有操作 (其实我们也可以不设置这个状态)
    • 第一次持有股票
    • 第一次不持有股票
    • 第二次持有股票
    • 第二次不持有股票
      dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
      需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票
  2. 确定递推公式

  • 达到dp[i][1]状态,有两个具体操作:

    • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
    • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
    • dp[i][1]一定是选最大的,所以dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
  • 同理dp[i][2]也有两个操作:

    • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
    • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
    • 所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
  • 同理可推出剩下状态部分:
    dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
    dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化
    第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
    第0天做第一次买入的操作,dp[0][1] = -prices[0];
    第0天做第一次卖出的操作,这个初始值应该是多少呢?
    此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
    第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
    第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
    所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
    同理第二次卖出初始化dp[0][4] = 0;

  2. 确定遍历顺序
    从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  3. 举例推导dp数组
    以输入[1,2,3,4,5]为例


    image.png
class Solution {
    public int maxProfit(int[] prices) {
        int len = prices.length;

        /*
         * 定义 5 种状态:
         * 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
         */
        int[][] dp = new int[len][5];
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for(int i = 1; i < len; i++){
            dp[i][1] = Math.max(dp[i - 1][1], 0 - prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[len - 1][4];
         
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容