概率函数P(x)、概率分布函数F(x)、概率密度函数f(x)

写在前面:

进入主题前,先明确几个概念:
离散型变量(或取值个数有限的变量):取值可一一列举,且总数是确定的,如投骰子出现的点数(1点、2点、3点、4点、5点、6点)。
连续型变量(或取值个数无限的变量):取值无法一一列举,且总数是不确定的,如所有的自然数(0、1、2、3……)。

离散型变量取某个值xi的概率P(xi)是个确定的值(虽然很多时候我们不知道这个值是多少),即P(xi)≠0:例如,投一次骰子出现2点的概率是P(2)=1/6。

连续型变量取某个值xi的概率P(xi)=0:对于连续型变量而言,“取某个具体值的概率”的说法是无意义的,因为取任何单个值的概率都等于0,只能说“取值落在某个区间内的概率”,或“取值落在某个值邻域内的概率”,即只能说P(a<xi≤b),而不能说P(xi)。 为什么是这样?且看下例:
  例如,从所有自然数中任取一个数,问这个数等于5的概率是多少?从所有的自然数中取一个,当然是有可能取到5的,但是自然数有无穷多个,因此取到5的概率是1/∞,也就是0。
  又如扔飞镖,虽然是有可能落在靶心的,但其概率也是0(不考虑熟练程度等其他因素),因为靶盘上有无数个点,每个点的概率是一样的,因此落在某一个具体的点上的概率为1/∞=0。

根据前面的例子可知:在连续型变量中:概率为0的事件是有可能发生的,概率为1的事件不一定必然发生。

进入主题:

概率分布:给出了所有取值及其对应的概率(少一个也不行),只对离散型变量有意义。例如:

概率分布.png

概率函数:用函数形式给出每个取值发生的概率,P(x)(x=x1,x2,x3,……),只对离散型变量有意义,实际上是对概率分布的数学描述。

概率分布和概率函数只对离散型变量有意义,那如何描述连续型变量呢?

答案就是“概率分布函数F(x)”和“概率密度函数f(x)”,当然这两者也是可以描述离散型变量的。

概率分布函数F(x):给出取值小于某个值的概率,是概率的累加形式,即:
F(xi)=P(x<xi)=sum(P(x1),P(x2),……,P(xi))(对于离散型变量)或求积分(对于连续型变量,见后图)。
概率分布函数F(x)的性质

概率分布函数性质.png

概率分布函数F(x)的作用:如下图
(1)给出x落在某区间(a,b]内的概率:P(a<x≤b)=F(b)-F(a)
(2)根据F(x)的斜率判断“区间概率”P(A<x≤B)的变化(实际上就是后面要说的概率密度函数f(x))(特别注意:是判断“区间概率”,即x落在(A,B]中的概率,而不是x取某个确定值的概率,这是连续型变量和离散型变量的本质区别)
  某区间(A,B]内,F(x)越倾斜,表示x落在该区间内的概率P(A<x≤B) 越大。如图中(a,b]区间内F(x)的斜率最大,如果将整个取值区间以δx=b-a的间隔等距分开,则x落在(a,b]内的概率最大。为什么?因为P(A<x≤B) )=F(B)-F(A),所有区间中只有在(a,b]这个区间上(即A=a,B=b)F(B)-F(A)达到最大值,也就是图中竖向红色线段最长。
概率分布函数解析.png

概率密度函数f(x):给出了变量落在某值xi邻域内(或者某个区间内)的概率变化快慢概率密度函数的值不是概率,而是概率的变化率,概率密度函数下面的面积才是概率

概率密度函数定义.png

概率密度函数性质.png

概率分布函数和概率密度函数之间的关系.png

注意.png

约定.png

连续型变量的概率、概率分布函数、概率密度函数之间的关系(以正态分布为例)如下图:
  对于正态分布而言,x落在u附近的概率最大,而F(x)是概率的累加和,因此在u附近F(x)的递增变化最快,即F(x)曲线在(u,F(u))这一点的切线的斜率最大,这个斜率就等于f(u)。x落在a和b之间的概率为F(b)-F(a)(图中的红色小线段),而在概率密度曲线中则是f(x)与ab围成的面积S。如下图所示:

概率、概率分布函数、概率密度函数之间的关系.png

概率密度函数在某点a的值f(a)的物理意义到底是什么?

我们知道f(a)表示,概率分布函数F(x)在a点的变化率(或导数);其物理意义实际上就是x落在a点附近的无穷小邻域内的概率,但不是落在a点的概率(前已述及,连续变量单点概率=0),用数学语言描述就是:

关系.jpg

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容