20190723工作进展

  1. rm -rf ../../origin_deep_cluster_odps_8.tar.gz
    tar -cvzf ../../origin_deep_cluster_odps_8.tar.gz *

sudo docker run -ti --name hengsong2 -v /Users/songge/Desktop/beifen/hengsong.lhs:/home/hengsong --net=host reg.docker.alibaba-inc.com/zhiji/imgtoolkit_video:nightly-dev bash

  1. docker 的 java 环境

source /etc/profile

JAVA_HOME=/home/hengsong/jdk1.8.0_221
JRE_HOME=JAVA_HOME/jre PATH=PATH:JAVA_HOME/bin CLASSPATH=.:JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export JAVA_HOME
export JRE_HOME
export PATH
export CLASSPATH

  1. 给阔姐的表

graph_embedding.jl_jingyan_query_related_video_pool
where type_biz=2
body里的 item_id, ugc_old_memo/s":"feedback","text/s": video_url, video_id 字段

create table hs_jingyan_query_related_video_pool_ugc as
select id, coalesce(CONCAT('http://cloud.video.taobao.com', get_json_object(body, '.entities.k2.play_url/s')),CONCAT('http:', get_json_object(body, '.entities.k3.play_url/s')))as video_url, coalesce(get_json_object(body, '.entities.k3.video_id/l'), get_json_object(body, '.entities.k2.video_id/l')) as video_id, coalesce(get_json_object(body, '.entities.k1.item_id/l') ,get_json_object(body, '.entities.k0.item_id/l') )as item_id, coalesce(get_json_object(body, '.entities.k2.text/s'),get_json_object(body, '.entities.k1.text/s')) as text
from graph_embedding.jl_jingyan_query_related_video_pool where ds=max_pt('graph_embedding.jl_jingyan_query_related_video_pool') and type_biz=2;

graph_embedding.hs_jingyan_query_related_video_pool_ugc

  1. 得到负采样

hs_tmp_dssm_6

hs_tmp_dssm_index_1
hs_tmp_dssm_item_id_1
create table hs_tmp_36 as select item_id from hs_tmp_dssm_6;
create table hs_tmp_dssm_item_id_1 as select int(rand() * 135525) as randint, item_id from hs_tmp_36;
(5 * ) insert into table hs_tmp_dssm_item_id_1 select int(rand() * 135525) as randint, item_id from hs_tmp_36;

hs_tmp_dssm_8
create table hs_tmp_dssm_8 as
select a.index, b.item_id from
(select index from hs_tmp_dssm_index_1)a join (select * from hs_tmp_dssm_item_id_1)b on a.index == b.randint % 5421;

select index, count(*) as freq from hs_tmp_dssm_8 group by index order by freq desc limit 10;

去重

hs_tmp_dssm_9->hs_tmp_dssm_10

create table hs_tmp_dssm_9 as select a.*, b.index as indexb, b.item_id as item_idb from (select * from hs_tmp_dssm_8)a left join (select * from hs_tmp_dssm_6)b on a.index=b.index and a.item_id=b.item_id;

create table hs_tmp_dssm_10 as select index, item_id, 0 as label from hs_tmp_dssm_9 where indexb is NULL and item_idb is NULL;

create table hs_tmp_dssm_11 as select index, item_id, 1 as label from hs_tmp_dssm_6;

得到样本集合
positive samples : hs_tmp_dssm_11
negetive samples : hs_tmp_dssm_10

乱序
insert into table hs_tmp_dssm_11 select * from hs_tmp_10;
create table hs_tmp_38 as select int(rand() * 11000000000) as id, * from hs_tmp_dssm_11;
create table hs_tmp_dssm_12 as select index, item_id, label from hs_tmp_38 order by id;

create table hs_tmp_dssm_13 as select * from hs_tmp_38 order by id;

下面这个更好:

drop table hs_tmp_dssm_12;
yes
create table hs_tmp_dssm_12 lifecycle 30 as select * from hs_tmp_dssm_13 DISTRIBUTE by random();

drop table hs_tmp_dssm_13;
yes
create table hs_tmp_dssm_13 lifecycle 30 as select * from hs_tmp_dssm_12 DISTRIBUTE by random();

+------------+------------+
| label | freq |
+------------+------------+
| 0 | 5828333140 |
| 1 | 1171862133 |
+------------+------------+

drop table if exists graph_embedding.zj_xhs_dssm_pos_neg_sample_info_shuffle_;
create table if not exists graph_embedding.zj_xhs_dssm_pos_neg_sample_info_shuffle_ LIFECYCLE 30
as select * from graph_embedding.zj_xhs_dssm_pos_neg_sample_info_ DISTRIBUTE by random();

取得query_ws和title_ws字段:
create table hs_tmp_39 as select distinct index, se_keyword_ws from hs_tmp_dssm_3;
create table hs_tmp_40 as select distinct item_id, title_ws from hs_tmp_dssm_3;

create table hs_tmp_41 as
select a.index, a.se_keyword_ws, b.item_id, b.label from (select * from hs_tmp_39)a join (select * from hs_tmp_dssm_12)b on a.index == b.index;

create table hs_tmp_42 as
select a.title_ws, b.* from (select * from hs_tmp_40)a join (select * from hs_tmp_41)b on a.item_id == b.item_id;

训练数据:hs_train_data_dssm_1 测试数据:hs_test_data_dssm_1
drop table if exists hs_train_data_dssm_1;
yes
drop table if exists hs_test_data_dssm_1;
yes
PAI -name split -project algo_public
-DinputTableName=graph_embedding.hs_tmp_42
-Doutput1TableName=graph_embedding.hs_train_data_dssm_1
-Doutput2TableName=graph_embedding.hs_test_data_dssm_1
-Dfraction=0.8
-DmemSizePerCore=4096
-DcoreNum=300
;

判断title补全长度
create table hs_title_length as select REGEXP_COUNT(title_ws, ' ') as title_len, REGEXP_COUNT(se_keyword_ws, ' ') as query_len from hs_tmp_42;
总数量:7000195273

25: 129186737
30: 43367246

10: 0
取20更好一点

pai -name tensorflow140 -Dscript="file:///home/hengsong/origin_deep_cluster_odps_8.tar.gz" -DentryFile="train_v4.py" -Dcluster='{"worker":{"count":30, "cpu":200, "memory":4000}, "ps":{"count":30, "cpu":200, "memory":5000}}' -Dtables="odps://graph_embedding/tables/hs_train_data_dssm_1,odps://graph_embedding/tables/hs_test_data_dssm_1" -DcheckpointDir="oss://bucket-automl/hengsong/?role_arn=acs:ram::1293303983251548:role/graph2018&host=cn-hangzhou.oss-internal.aliyun-inc.com" -DuserDefinedParameters="--learning_rate=1e-2 --batch_size=2048 --is_save_model=True --attention_type=1 --num_epochs=100 --ckpt=hs_ugc_video.ckpt" -DuseSparseClusterSchema=True;

当前进程:

  1. 给之己的hive语句
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352