R语言sfnetworks包,st_network_paths地理空间点间路径

R语言sfnetworks包,st_network_paths地理空间点间路径
寻找最短路径,最短距离

# Mon Jul 26 15:30:06 2021 -

# 字符编码:UTF-8
# R 版本:R x64 4.1 for window 11
# cgh163email@163.com
# 个人笔记不负责任,拎了个梨🍐🍈
#.rs.restartR()
require(sfnetworks)
rm(list = ls());gc()

?st_network_paths()#地理空间点间路径

library(sf, quietly = TRUE)
library(tidygraph, quietly = TRUE)

#创建以边长度作为权重的网络。
#这些权重将自动用于最短路径计算。
net <- as_sfnetwork(roxel, directed = FALSE) #|> plot()
  st_transform(3035) |>
  activate("edges")  |>
  mutate(weight = edge_length())

# 提供节点索引。
paths = st_network_paths(net, from = 495, to = 121)
paths
#> # A tibble: 1 x 2
#>   node_paths edge_paths
#>   <list>     <list>
#> 1 <int [33]> <int [32]>
node_path = paths %>%
  slice(1) %>%
  pull(node_paths) %>%
  unlist()
node_path
#>  [1] 495 485 244 402 166  18  19  96 299 283   9 167 292 524 111 506 512 657 533
#> [20] 424 426 208 164 260 471 143 136 135 140 478  28  29 121
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)
dev.copy(png, "2.png");dev.off()
#提供节点作为空间点。
#不等于节点的点将捕捉到最近的节点。
p1 = st_geometry(net, "nodes")[495] + st_sfc(st_point(c(50, -50)))
st_crs(p1) = st_crs(net)
p2 = st_geometry(net, "nodes")[121] + st_sfc(st_point(c(-10, 100)))
st_crs(p2) = st_crs(net)

paths = st_network_paths(net, from = p1, to = p2)
paths
#> # A tibble: 1 x 2
#>   node_paths edge_paths
#>   <list>     <list>
#> 1 <int [33]> <int [32]>
node_path <- paths %>%
  slice(1) %>%
  pull(node_paths) %>%
  unlist()
node_path
#>  [1] 495 485 244 402 166  18  19  96 299 283   9 167 292 524 111 506 512 657 533
#> [20] 424 426 208 164 260 471 143 136 135 140 478  28  29 121
oldpar = par(no.readonly = TRUE)
par(mar = c(1,1,1,1))
plot(net, col = "grey")
plot(c(p1, p2), col = "black", pch = 8, add = TRUE)
plot(slice(activate(net, "nodes"), node_path), col = "red", add = TRUE)
par(oldpar)
dev.copy(png, "3.png");dev.off()
# Mon Jul 26 15:45:49 2021 --

image.png

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容