机器学习笔记:AdaBoost 公式推导

AdaBoost 是集成算法中 Boosting 家族的一种,它的特点是分类器串行。首先要知道加法模型和指数损失函数。

加法模型

f(x) = \sum\limits_{m=1}^{M}\alpha_mG_{m}(x)

加法模型是一个加和模型,每一轮训练一个分类器 G_{m}(x)​,并且基于这个分类器的误差,得到这个分类器的权重 \alpha_m​

指数损失函数

L(y,f(x)) = \exp[-yf(x)]

对于分类模型而言,上述损失函数,在分类正确的时候,指数部分为负数;在分类错误的时候,指数部分为正数,符合损失函数的意义。

公式推导

1、由加法模型的定义:
f(x) = \sum\limits_{m=1}^{M}\alpha_mG_{m}(x)
得到迭代公式:
f_m(x) = f_{m-1}(x) + \alpha_mG_{m}(x)
这里 m > 1。此时应该认为函数 f_{m-1}(x) 是已知的,每一轮迭代求的是分类器 G_{m}(x) 和这个分类器的权重 \alpha_m

2、将 f_m(x) = f_{m-1}(x) + \alpha_mG_{m}(x) 代入损失函数得:
L(y,f(x)) = \sum_{i=1}^{N}\exp[-y_i(f_{m-1}(x) + \alpha_mG_{m}(x))]
把指数加法因子展开,变成指数的乘积(想一下具体的例子:a^{5+3} = a^5 \cdot a^3)得到:
L(y,f(x)) = \sum_{i=1}^{N}[\exp[-y_i(f_{m-1}(x)][\exp(-y_i\alpha_mG_{m}(x))]]

3、由于 y_if_{m-1}(x) 已知,可以令 \overline w_{mi} =\exp[-y_if_{m-1}(x_i)],于是
L(y,f(x)) = \sum_{i=1}^{N}\overline w_{mi} \exp(-y_i\alpha_mG_{m}(x))
于是分类器 G_{m}(x)​ 和这个分类器的权重 \alpha_m​ 可以表示成:
(\alpha_m^{*},G_{m}^{*}(x)) = \underbrace{arg\;min\;}_{\alpha,G} \sum_{i=1}^{N}\overline w_{mi} \exp(-y_i\alpha_mG_{m}(x))

4、先求 G_{m}^{*}(x),看上面的式子,分类器的权重 \alpha_m 可以认为是一个确定的数,G_{m}^{*}(x) 是使得分错的(带权重的)样本里损失函数最小的那个,可以写成:
G_{m}^*(x) = \underbrace{arg\;min\;}_{G} \sum_{i=1}^{N}\overline w_{mi} I(y_i \neq G(x_i))
注意:重点理解上面两个式子的等价性,这一步相当于针对不同权重的样本训练分类器

5、得到 G_{m}^{*}(x) 以后,再求 \alpha_m^*。还是看损失函数,可以写成:
\begin {aligned} L(y,f(x)) &= \sum_{i=1}^{N}\overline w_{mi} \exp(-y_i\alpha_mG_{m}(x)) \\ &=\sum_{y_i = G_m(x_i)}\overline w_{mi} e^{-\alpha} + \sum_{y_i \neq G_m(x_i)}\overline w_{mi} e^{\alpha} \\ &=\sum_{y_i = G_m(x_i)}\overline w_{mi} e^{-\alpha} + \sum_{y_i \neq G_m(x_i)}\overline w_{mi} e^{-\alpha} - \sum_{y_i \neq G_m(x_i)}\overline w_{mi} e^{-\alpha} + \sum_{y_i \neq G_m(x_i)}\overline w_{mi} e^{\alpha} \\ &= e^{-\alpha}\sum_{i=1}^{N}\overline w_{mi} + (e^{\alpha} - e^{-\alpha})\sum_{y_i \neq G_m(x_i)}\overline w_{mi} \\ &= e^{-\alpha}\sum_{i=1}^{N}\overline w_{mi} + (e^{\alpha} - e^{-\alpha})\sum_{i=1}^N \overline w_{mi} I(y_i \neq G_m(x_i)) \end{aligned}
把上式对 \alpha 求导,再令导函数为 0,得:
-e^{-\alpha}\sum_{i=1}^{N}\overline w_{mi} + (e^{\alpha} + e^{-\alpha})\sum_{i=1}^N \overline w_{mi} I(y_i \neq G_m(x_i)) = 0
上式两边同时除以 \sum_{i=1}^{N}\overline w_{mi}​,得:
-e^{-\alpha} + (e^{\alpha} + e^{-\alpha})\cfrac{\sum_{i=1}^N \overline w_{mi} I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N}\overline w_{mi}} = 0
\cfrac{\sum_{i=1}^N \overline w_{mi} I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N}\overline w_{mi}} = e_m​,则有:

\begin {aligned} -e^{-\alpha} + (e^{\alpha} + e^{-\alpha})e_m &= 0 \\ (e^{\alpha} + e^{-\alpha}) e_m &= e^{-\alpha} \\ (e^{2\alpha} + 1)e_m &= 1 \\ e^{2\alpha} + 1 &= \cfrac{1}{e_m} \\ e^{2\alpha} &= \cfrac{1}{e_m} -1 = \cfrac{1 - e_m}{e_m} \\ 2\alpha &= \log\cfrac{1 - e_m}{e_m} \\ \alpha &= \cfrac{1}{2}\log\cfrac{1 - e_m}{e_m} \end {aligned}

于是得到使得损失函数最小的
\alpha_m^* = \cfrac{1}{2}\log\cfrac{1 - e_m}{e_m}
这里
e_m =\cfrac{\sum_{i=1}^N \overline w_{mi} I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N}\overline w_{mi}} =\sum_{i=1}^N w_{mi} I(y_i \neq G_m(x_i))

权重更新公式

那么权重如何更新呢?
已知:
f_m(x) = f_{m-1}(x) + \alpha_mG_{m}(x)
和我们之前的定义:
\overline w_{mi} =\exp[-y_if_{m-1}(x_i)]
于是就有:
\begin {aligned} \overline w_{m+1,i} &=\exp[-y_if_{m}(x_i)] \\ &=\exp[-y_i[f_{m-1}(x_i) + \alpha_mG_{m}(x_i)]]\\ &=\exp[-y_if_{m-1}(x_i)]\exp[-y_i\alpha_mG_{m}(x_i)]\\ &=\overline w_{m,i}\exp[-y_i\alpha_mG_{m}(x_i)] \end {aligned}

(本节完)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容