yolo 是著名的物体检测系列开源项目,使用python + pytorch实现,支持cpu、gpu训练以及推理,属于计算机视觉对象检测模型天花板,被应用在各行各业的各个角落。yolov8 相对于 yolov5 输出有一些变化。
遗憾的是,官方并没有给出C# SDK。
没有关系、我们dotnet er会把它造出来。
为什么是C#? 你还不明白吗!!!
了解模型的输入和输出形状
从 Netron 上可以看到我们的模型输入输出如下
Inputs float[1,3,640,640] (人们常叫它 nchw)
- 1 batch 批次大小 (1表示一次可以传入一张图片)
- 3 chanel 通道数 (也就是R、G、B)
- 640 width 图像宽度
- 640 height 图像高度
组合起来是一个四维数组,举个例子
[
[
[
[ R / 255f, G / 255f, B / 255f ]
]
]
]
Outputs float[1,31,8400]
- 1 batch 批次大小 (1表示只会输出一张图片的结果)
- 31 标签数量
- 8400 矩形数量
组合起来是一个三维数组,举个例子
[
[
[ 27, 28, 29, 30, 0.1, 0.2,...0.31]
]
]
- 27 矩形中心x坐标
- 28 矩形中心y坐标
- 29 矩形宽度
- 30 矩形高度
- 0.1 对象是class1 的概率
- 0.2 对象是class2 的概率
- 0.31 对象是class31 的概率
好的,理论到这里就已经结束了,看起来非常的简单,算法功底好的小伙伴可以 ctrl+w 。
----------华丽的分割线 ---------
代码实现 - 将ECMA标准语言的优势发挥到淋漓尽致
图像转Tensor
private static Tensor<float> ImageToTensor(Image<Rgb24> image)
{
Tensor<float> tensor = new DenseTensor<float>([1, 3, image.Height, image.Width]);
for (int h = 0; h < image.Height; h++)
{
for (int w = 0; w < image.Width; w++)
{
var px = image[w, h];
tensor[0, 0, h, w] = px.R / 255f;
tensor[0, 1, h, w] = px.G / 255f;
tensor[0, 2, h, w] = px.B / 255f;
}
}
return tensor;
}
输出张量解析
private static IEnumerable<ObjectPrediction> ParseOutput(Tensor<float> output, float confidence)
{
for (int b = 0; b < BATCH_SIZE; b++)
{
for (int r = 0; r < RECTANGLES_COUNT; r++)
{
float xCenter = output[b, 0, r];
float yCenter = output[b, 1, r];
float width = output[b, 2, r];
float height = output[b, 3, r];
int bestClass = 0;
float bestClassScore = output[0, 4, r];
for (int tc = 1; tc < TAGS_COUNT - 4; tc++)
{
float currentScore = output[0, 4 + tc, r];
if (currentScore > bestClassScore)
{
bestClass = tc;
bestClassScore = currentScore;
}
}
if (bestClassScore < confidence)
{
continue;
}
yield return new ObjectPrediction
{
LabelColor = Tags[bestClass],
RectangleF = new RectangleF(xCenter - width / 2, yCenter - height / 2, width, height),
Score = bestClassScore
};
}
}
}
IoU
public static float IoU(RectangleF a, RectangleF b)
{
float xA = MathF.Max(a.Left, b.Left);
float yA = MathF.Max(a.Top, b.Top);
float xB = MathF.Min(a.Right, b.Right);
float yB = MathF.Min(a.Bottom, b.Bottom);
float interArea = MathF.Abs(MathF.Max(xB - xA, 0) * MathF.Max(yB - yA, 0));
if (interArea <= 0f)
{
return 0f;
}
float boxAArea = MathF.Abs((a.Right - a.Left) * (a.Bottom - a.Top));
float boxBArea = MathF.Abs((b.Right - b.Left) * (b.Bottom - b.Top));
return interArea / (boxAArea + boxBArea - interArea);
}
NonIoU
private static IEnumerable<ObjectPrediction> NonIoU(IEnumerable<ObjectPrediction> predictions, float maxOverlap = 0.6f)
{
return predictions
.GroupBy(x => x.LabelColor)
.SelectMany(x =>
{
List<ObjectPrediction> items = [.. x];
int length = items.Count;
bool[] flags = new bool[items.Count];
for (int i = 0; i < items.Count; i++)
{
ObjectPrediction first = items[i];
RectangleF firstRectangleF = first.RectangleF;
for (int j = i + 1; j < items.Count; j++)
{
var second = items[j];
var secondRectangleF = second.RectangleF;
if (flags[j])
{
continue;
}
var overlap = IoU(firstRectangleF, secondRectangleF);
if (overlap >= maxOverlap)
{
if (first.Score < second.Score)
{
flags[i] = true;
continue;
}
flags[j] = true;
}
}
}
return flags
.Select((flag, i) => (flag, i))
.Where(x => !x.flag)
.Select((_, i) => items[i]);
});
}
组合起来
public IEnumerable<ObjectPrediction> Predict(Image<Rgb24> image, float confidence = 0.6f)
{
using var inputImage = image.Clone(x => x.Resize(new ResizeOptions
{
Size = new Size(640, 640),
Mode = ResizeMode.Pad,
}));
Tensor<float> input = ImageToTensor(inputImage);
List<NamedOnnxValue> inputs = [NamedOnnxValue.CreateFromTensor(INPUT_NAME, input)];
using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = _session.Run(inputs);
Tensor<float> output = results[0].AsTensor<float>();
IEnumerable<ObjectPrediction> predictions = ParseOutput(output, confidence);
(float neww, float newh, float rate) = CalculateTransform(image.Width, image.Height, inputImage.Width, inputImage.Height);
float offsetX = (inputImage.Width - neww) / 2f / rate;
float offsetY = (inputImage.Height - newh) / 2f / rate;
foreach (var item in NonIoU(predictions))
{
item.RectangleF = new RectangleF
{
X = item.RectangleF.X / rate - offsetX,
Y = item.RectangleF.Y / rate - offsetY,
Width = item.RectangleF.Width / rate,
Height = item.RectangleF.Height / rate
};
yield return item;
}
}
private static (float neww, float newh, float rate) CalculateTransform(int width, int height, int paddedWidth, int paddedHeight)
{
float rate = (width > height) ? (float)paddedWidth / width : (float)paddedHeight / height;
if (width > height)
{
return (paddedWidth, height * rate, rate);
}
return (width * rate, paddedHeight, rate);
}