Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Solution1:DP
思路:
Time Complexity: O(mn) Space Complexity: O(mn)
Solution2:DP with space optimization
思路:
Time Complexity: O(mn) Space Complexity: O(2n)
Solution3:DP with space optimization
思路:
Time Complexity: O(mn) Space Complexity: O(n)
也可以利用输入直接inplace
Solution1 Code:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m + 1][n + 1]; // add dummy init row and col
dp[0][1] = 1;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
if(obstacleGrid[i - 1][j - 1] == 0) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m][n];
}
}
Solution2 Code:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[] pre = new int[n + 1];
int[] cur = new int[n + 1];
pre[1] = 1;
for(int i = 1; i <= m; i++) {
for(int j = 1; j <= n; j++) {
if(obstacleGrid[i - 1][j - 1] == 0) {
cur[j] = cur[j - 1] + pre[j];
}
else {
cur[j] = 0;
}
}
int[] tmp = pre;
pre = cur;
cur = tmp;
}
return pre[n];
}
}
Solution3 Code:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[] dp = new int[n];
dp[0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 0) {
dp[j] += dp[j - 1];
}
else if (j > 0) {
p[j] += dp[j - 1];
}
}
}
return dp[n - 1];
}
}