Spark常见问题解决办法

以下是在学习和使用spark过程中遇到的一些问题,记录下来。

1、首先来说说spark任务运行完后查错最常用的一个命令,那就是把任务运行日志down下来。 程序存在错误,将日志down下来查看具体原因!down日志命令:yarn logs -applicationId app_id

2、Spark性能优化的9大问题及其解决方案<http://book.51cto.com/art/201409/453045.htm>
Spark程序优化所需要关注的几个关键点——最主要的是数据序列化和内存优化

  • 问题1:reduce task数目不合适
    解决方法:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism。通常,reduce数目设置为core数目的2到3倍。数量太大,造成很多小任务,增加启动任务的开销;数目太少,任务运行缓慢。

  • 问题2:shuffle磁盘IO时间长
    解决方法:设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能;

  • 问题3:map|reduce数量大,造成shuffle小文件数目多
    解决方法:默认情况下shuffle文件数目为map tasks * reduce tasks. 通过设置spark.shuffle.consolidateFiles为true,来合并shuffle中间文件,此时文件数为reduce tasks数目;

  • 问题4:序列化时间长、结果大
    解决方法:Spark默认使.用JDK.自带的ObjectOutputStream,这种方式产生的结果大、CPU处理时间长,可以通过设置spark.serializer为org.apache.spark.serializer.KryoSerializer。另外如果结果已经很大,可以使用广播变量;

  • 问题5:单条记录消耗大
    解决方法:使用mapPartition替换map,mapPartition是对每个Partition进行计算,而map是对partition中的每条记录进行计算;

  • 问题6:collect输出大量结果时速度慢
    解决方式:collect源码中是把所有的结果以一个Array的方式放在内存中,可以直接输出到分布式?文件系统,然后查看文件系统中的内容;

  • 问题7:任务执行速度倾斜
    解决方式:如果是数据倾斜,一般是partition key取的不好,可以考虑其它的并行处理方式 ,并在中间加上aggregation操作;如果是Worker倾斜,例如在某些worker上的executor执行缓慢,可以通过设置spark.speculation=true 把那些持续慢的节点去掉;

  • 问题8:通过多步骤的RDD操作后有很多空任务或者小任务产生
    解决方式:使用coalesce或repartition去减少RDD中partition数量;

  • 问题9:Spark Streaming吞吐量不高
    解决方式:可以设置spark.streaming.concurrentJobs

3、intellij idea直接编译spark源码及问题解决:

Spark编译:clean package -Dmaven.test.skip=true
参数:-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m

4、import Spark source code into intellj, build Error:
not found: type SparkFlumeProtocol and EventBatch

spark_complie_config.png

5、org.apache.spark.SparkException: Exception thrown in awaitResult
set "spark.sql.broadcastTimeout" to increase the timeout

6、Apache Zeppelin编译安装:<http://www.iteblog.com/archives/1573>
Apache Zeppelin installation grunt build error:
解决方案:进入web模块npm install;
http://stackoverflow.com/questions/33352309/apache-zeppelin-installation-grunt-build-error?rq=1

7、Spark源码编译遇到的问题解决:http://www.tuicool.com/articles/NBVvai
内存不够,这个错误是因为编译的时候内存不够导致的,可以在编译的时候加大内存。

[ERROR] PermGen space -> [Help 1]
[ERROR] 
[ERROR] To see the full stack trace of the errors,re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR] 
[ERROR] For more information about the errors and possible solutions, 
please read the following articles:
[ERROR] [Help 1]http://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"

8、Exception in thread "main" java.lang.UnsatisfiedLinkError: no jnind4j in java.library.path
解决方案:I’m using a 64-Bit Java on Windows and still get the no jnind4j in java.library.path error It may be that you have incompatible DLLs on your PATH. In order to tell DL4J to ignore those you have to add the following as a VM parameter (Run -> Edit Configurations -> VM Options in IntelliJ): -Djava.library.path=""

9、spark2.0本地运行源码报错解决办法:

  1. 修改对应pom中的依赖jar包,将scope级别由provided改为compile
  2. 运行类之前,去掉make选项;在运行vm设置中增加-Dspark.master=local
  3. Win7下运行spark example代码报错:
    java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: file:D:/SourceCode/spark-2.0.0/spark-warehouse修改SQLConf类中WAREHOUSE_PATH变量,将file:前缀改为file:/或file:///
    createWithDefault("file:/${system:user.dir}/spark-warehouse")
  4. local模式运行:-Dspark.master=local

10、解决Task not serializable Exception错误
方法1:将RDD中的所有数据通过JDBC连接写入数据库,若使用map函数,可能要为每个元素都创建connection,这样开销很大,如果使用mapPartitions,那么只需要针对每个分区建立connection;mapPartitions处理后返回的是Iterator。
方法2:对未序列化的对象加@transisent引用,在进行网络通信时不对对象中的属性进行序列化

11、这个函数在func("11")调用时候正常,但是在执行func(11)或func(1.1)时候就会报error: type mismatch的错误. 这个问题很好解决

  • 针对特定的参数类型, 重载多个func函数,这个不难, 传统JAVA中的思路, 但是需要定义多个函数
  • 使用超类型, 比如使用AnyVal,Any;这样的话比较麻烦,需要在函数中针对特定的逻辑做类型转化,从而进一步处理上面两个方法使用的是传统JAVA思路,虽然都可以解决该问题,但是缺点是不够简洁;在充满了语法糖的Scala中,针对类型转换提供了特有的implicit隐式转化的功能;

12、org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle
解决方案:这种问题一般发生在有大量shuffle操作的时候,task不断的failed,然后又重执行,一直循环下去,直到application失败。一般遇到这种问题提高executor内存即可,同时增加每个executor的cpu,这样不会减少task并行度。

13、Spark ML PipeLine GBT/RF预测时报错,java.util.NoSuchElementException: key not found: 8.0
错误原因:由于GBT/RF模型输入setFeaturesCol,setLabelCol参数列名不一致导致。
解决方案:只保存训练算法模型,不保存PipeLineModel

14、linux删除乱码文件,step1. ls -la; step2. find . -inum inode num -exec rm {} -rf ;

15、Caused by: java.lang.RuntimeException: Failed to commit task Caused by: org.apache.spark.executor.CommitDeniedException: attempt_201603251514_0218_m_000245_0: Not committed because the driver did not authorize commit
如果你比较了解spark中的stage是如何划分的,这个问题就比较简单了。一个Stage中包含的task过大,一般由于你的transform过程太长,因此driver给executor分发的task就会变的很大。所以解决这个问题我们可以通过拆分stage解决。也就是在执行过程中调用cache.count缓存一些中间数据从而切断过长的stage。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容