TensorFlow.js学习

一、关于TensorFlow.js

作为深度学习界的当红炸子鸡——TensorFlow 开源组织终于在 2018 年 3 月推出了首个 JavaScript 版本。TensorFlow.js 可以在浏览器端完成模型训练、执行和再训练等基本任务,并且借助 WebGL 技术,可以和 Python、C++ 版本一样能够通过 GPU 硬件加速完成计算过程。

二、基本概念

1.算法模型

y = f(x)
上述公式中,x是输入项,y是输出项,而f(x)就是模型的核心函数。需要注意的是这里的输入和输出通常都是张量而不是标量。
例如:
y = w1 * obstacleX + w2 * obstacleWidth + b
其中obstacleX和obstacleWidth是输入项, w1、w2为输入项的权重,b是偏移量

2.训练

通过已知输入项 obstacleX 、obstacleWidth和输出项 y 来调节模型中 w1、w2 和 b 参数直到“最佳效果”的过程,被称为训练(train)过程,而 y 因为是已知的输出项,又被称为标签(label),多组输入项(obstacleX 、obstacleWidth)和 输出项(y) 在一起被称为训练数据集(training data set)。训练通常需要反复执行很多次,才能达到“最佳效果”。

3.预测

机器学习中,已知输入项 x 和模型求 y 时,被称为预测(predict)过程。

4.评价

在训练过程中,将训练数据集中的 x 作为输入项,执行预测过程,将预测结果与标签 y 的实际结果进行对比,并通过一个函数得到一个分值用以表示当前模型的拟合能力,被称为评价(evaluatie)过程,这个函数被称为评价函数或损失函数(loss function)。

机器学习就是一个不断训练、评价迭代的模型训练过程,训练得越好,则未来预测得越准确。

5.张量

张量是TensorFlow.js中的最重要的数据单元,它是一个形状为一维或多维数组组成的数值的集合。tf.Tensor和多维数组其实非常的相似。

标量 : 有些物理量,只有数值大小,没有方向,这种即称为标量,也可称做零阶张量。
向量(矢量 vector): 具有大小和方向的量,也可称做一阶张量
张量(tensor):我们的目的是要用数学量来表示物理量,可是标量加上向量,都不足以表达所有的物理量,所以就需要扩大数学量的概念,张量就出现了。

张量包含如下属性:

  • rank: 张量的维度(张量的维数被描述为阶或者秩),例如纯量就是0阶,向量为1阶,矩阵为2阶。
  • shape: 每个维度的数据大小
const a = tf.tensor([[1, 2], [3, 4]]);
console.log('a shape:', a.shape);
a.print();

const b = a.reshape([4, 1]);
console.log('b shape:', b.shape);
b.print();

//a shape: 2,2
//Tensor
//   [[1, 2],
//     [3, 4]]
//b shape: 4,1
//Tensor
//    [[1],
//     [2],
//     [3],
//     [4]]
  • dtype: 张量中的数据类型,在默认的情况下,tf.Tensor的数据类型也就是 dtype为32位浮点型(float32)。当然tf.Tensor也可以被创建为以下数据类型:布尔(bool), 32位整型(int32), 64位复数(complex64), 和字符串(string)

三、TensorFlow.js API

1.初始化创建一个张量

tf.tensor(values,shape?,dtype?)

tf.tensor([1, 2, 3, 4]).print();
//Tensor [1, 2, 3, 4]
tf.tensor([[1, 2], [3, 4]]).print();
//Tensor [[1, 2], [3, 4]]
tf.tensor([1, 2, 3, 4], [2, 2]).print();
//Tensor[[1, 2],[3, 4]]
//其中dtype 为('float32'|'int32'|'bool'|'complex64'|'string') 

tf.scalar(value, dtype?)创建零阶张量

tf.scalar(3.14).print();
//Tensor 3.140000104904175

tf.buffer(shape,dtype?,values?)

const buffer = tf.buffer([2, 2]);
buffer.set(3, 0, 0);
buffer.set(5, 1, 0);
buffer.toTensor().print();
//张量[[3,0],[5,0]]

tf.clone(x)

//创建一个具有与指定张量相同的值和形状的新张量。
const x = tf.tensor([1, 2]);
x.clone().print();
//张量[1,2]

tf.complex(real,imag)

//给定一个real表示复数的实部的张量和一个imag表示复数的虚部的张量,此操作将以[r0,i0,r1,i1]的形式逐元素返回复数,其中r表示实部,i代表imag的一部分。
const real = tf.tensor1d([2.25, 3.25]);
const imag = tf.tensor1d([4.75, 5.75]);
const complex = tf.complex(real, imag);
complex.print();
//张量[2.25 + 4.75j,3.25 + 5.75j]

tf.fill(shape,values,dtype?)

//创建一个用标量值填充的张量
tf.fill([2, 2], 4).print();
//张量[[4,4],[4,4]]

tf.imag(x)

//返回复数(或实数)张量的虚部。
const x = tf.complex([-2.25, 3.25], [4.75, 5.75]);
tf.imag(x).print();
Tensor  [4.75, 5.75]

tf.linspace(start,stop,num)

//在给定的间隔内返回均匀间隔的数字序列。
// start (数字) 序列的起始值。
// stop (数字) 序列的结束值。
// num (数字) 要生成的值的数目。
tf.linspace(0, 9, 10).print();
//张量[0、1、2、3、4、5、6、7、8、9]

tf.real(x)

//返回复数(或实数)张量的实部。
const x = tf.complex([-2.25, 3.25], [4.75, 5.75]);
tf.real(x).print();
//张量[-2.25,3.25]

tf.variable(initialValue,trainable?,name?,dtype?)

//用提供的初始值创建一个新变量。
// initialValue:张量的初始值
// trainable: 如果为true,则允许优化器对其进行更新。
// name:变量的名称
const x = tf.variable(tf.tensor([1, 2, 3]));
x.assign(tf.tensor([4, 5, 6]));
x.print();
//张量[4,5,6]

2.修改张量的形状

张量中的元素数量是这个张量的形状的乘积(例如一个形状为[2,3]的张量所含有的元素个数为2*3=6个)

tf.reshape(x,shape)

//给定输入张量,返回一个新的张量
const x = tf.tensor1d([1, 2, 3, 4]);
x.reshape([2, 2]).print();
//张量[[1,2],[3,4]]

3. 操作张量

tf.square()

const x = tf.tensor([1, 2, 3, 4]);
const y = x.square();  // 相当于 tf.square(x)
y.print();

tf,add()

const a = tf.tensor([1, 2, 3, 4]);
const b = tf.tensor([10, 20, 30, 40]);
const y = a.add(b);  // 相当于 tf.add(a, b)
y.print();

因为张量是不可变的,所以这些运算并不会更改他们的值。相应的这些操作总会返回一个新的张量。

tf.slice(x,begin,size?)

//x:要切片的输入张量
//begin:起始切片的坐标
//size:切片的大小

4.内存操作

tf.dispose()

const a = tf.tensor([[1, 2], [3, 4]]);
a.dispose(); // 相当于 tf.dispose(a)

参考资料

怎么通俗地理解张量?
tensorflow.js实战

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352