数据预处理

顺序:

  1. 导入数据包&数据

     import pandas as pd
     import numpy as np
     
     x = df_data.iloc[:,:-1].values
     y = df_data.iloc[:,-1].values
    
  2. 处理缺失值

     from sklearn.preprocessing import Imputer
     imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)
     imputer = imputer.fit_transform(x[:,1:])
    
  3. 离散特征归一化

     from sklearn.preprocessing import OneHotEncoder, LabelEncoder
     
     # 先用LabelEncoder标签化(因为独热只接受数值型)
     label_encoder_x = LabelEncoder()
     label_encoder_x = label_encoder_x.fit_transform(x[:,0])
     x[:,0] = label_encoder_x
     
     # 再用OneHotEncoder独热化
     onehotencoder = OneHotEncoder(categorical_features = [0])
     x = onehotencoder.fit_transform(x).toarray()
    
  4. 拆分验证集

     from sklearn.model_selection import train_test_split
     x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    
  5. 连续特征归一化

     from sklearn.preprocessing import StandardScaler
     sc_X = StandardScaler()
     x_train = sc_X.fit_transform(x_train)
     x_test = sc_X.transform(x_test)
     
     # ps:此处的x_train进行fit后test不用再fit
    

特征归一化

归一化的适用:

用:基于参数的模型或者距离的模型

不用:基于树的模型,例如随机森林、Bagging、Boosting

离散特征归一化:

【OnehotEncoder】即独热编码,label为标签编码,目的是将数据中的离散特征进行归一化。

from sklearn.preprocessing import OnehotEncoder
enc = OneHotEncoder(n_values = [2, 3, 4])
enc.fit([[0, 0, 3],
         [1, 1, 0]])

ans = enc.transform([[0, 2, 3]]).toarray()
ans

>> array([[1., 0., 0., 0., 1., 0., 0., 0., 1.]])

上述n_values的目的:第二个特征fit的数据中没有2,但是transform中是有的,所以需要手动添加,添加之后导致array的长度发生了变化,本来需要23=6现在需要33=9个

categorical_features = 'all',这个参数指定了对哪些特征进行编码,默认对所有类别都进行编码。也可以自己指定选择哪些特征

通过索引或者 bool 值来指定,看下例:

enc = OneHotEncoder(categorical_features = [0,2]) # 等价于 [True, False, True]
enc.fit([[0, 0, 3],
         [1, 1, 0],
         [0, 2, 1],
         [1, 0, 2]])

ans = enc.transform([[0, 2, 3]]).toarray()

>> [[ 1.  0.  0.  0.  0.  1.  2.]]

sparse=True 表示编码的格式,默认为 True,即为稀疏的格式,指定 False 则就不用 toarray() 了

handle_unknown=’error’,其值可以指定为 "error" 或者 "ignore",即如果碰到未知的类别,是返回一个错误还是忽略它。

Onehot的适用:

:独热编码用来解决类别型数据的离散值问题

不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。 Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度

对于【Label】则比较简单

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])

>> array([0., 0., 3., 2., 1.])

Label encoding的适用:

在某些情况下很有用,但是场景限制很多。再举一例:比如有[dog,cat,dog,mouse,cat],我们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat。所以目前还没有发现标签编码的广泛使用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容