深度学习 第4次作业

1.深层神经网络

下图所示,输入层并不算神经网络的层数,只有隐藏层和输出层才算,例如上图中左侧的神经网络结构为3层,右侧的为6层,分别有2个隐藏层和5个隐藏层。当L=4时,神经网络共有3个隐藏层,其中第一层和第二层有5个神经元,第三层有三个神经元。
深层神经网络.png

2.深层网络中的向前传播
前向传播.png

3.核对矩阵的维数

如何知道自己在设计神经网络模型的时候各个参数的维度是否正确的方法。
公式1.png
公式2.png

4.为什么使用深层表示

神经网络本就是针对非结构性数据而产生的一个算法,其根本特性也就是在每一层对数据进行特征提取。前几层网络只能学习一些低层次的简单特征,在后几层就把简单特征合并起来,去进行更深入的探测。所以前几层网络只是做一些简单的函数,而深层神经网络才可以拟合复杂的函数。
深层表示.png
深度学习.png

5.搭建深层神经网络块

之前的前向传播和反向传播中,介绍的是针对单个层的输入和输出,而利用单个层就可以搭建出一个完整的神经网络。

深层神经网络:

6.前向和反向传播

对于神经网络,每一层都有正向传播和反向传播。
总结.png

7.参数 VS 超参数
1)参数
常见的参数即为W[1],b[1],W[2],b[2]……W[1],b[1],W[2],b[2]……
2)超参数
learning_rate: αα
iterations(迭代次数)
hidden layer (隐藏层数量L)
hidden units (隐藏层神经元数量n[l])
激活函数的选择
minibatch size
几种正则化的方法
momentum(动力、动量)


8.这和大脑有什么关系

深度学习的实用层面

1.正则化

正则化减少过拟合:

2.梯度消失与梯度爆炸

3.梯度的数值逼近

4.梯度检验

优化算法
1.Mini-batch


2.指数加权平均


3.局部最优问题


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,884评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,212评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,351评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,412评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,438评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,127评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,714评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,636评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,173评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,264评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,402评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,073评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,763评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,253评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,382评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,749评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,403评论 2 358