2个功能:
1、能够判断摄像头前是否始终同一个人脸
2、将人脸与vgg-face的明星数据库比对,得到你的明星相
# -*- coding: utf-8 -*-
'''set up the vgg-face model using in week4(the same code)'''
from keras.models import Sequential, Model
from keras.layers import Flatten, Dropout, Activation, Permute
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
K.set_image_data_format( 'channels_last' )
def convblock(cdim, nb, bits=3):
L = []
for k in range(1,bits+1):
convname = 'conv'+str(nb)+'_'+str(k)
L.append( Conv2D(cdim,(3,3),padding='same',activation='relu',name=convname) )
L.append( MaxPooling2D((2,2), strides=(2,2)) )
return L
def vgg_face_blank():
withDO = True
if True:
mdl = Sequential()
mdl.add( Permute((1,2,3), input_shape=(224,224,3)) )
for l in convblock(64,1, bits=2):
mdl.add(l)
for l in convblock(128,2, bits=2):
mdl.add(l)
for l in convblock(256,3, bits=3):
mdl.add(l)
for l in convblock(512,4, bits=3):
mdl.add(l)
for l in convblock(512,5, bits=3):
mdl.add(l)
mdl.add( Conv2D(4096,kernel_size=(7,7),activation='relu',name='fc6'))
if withDO:
mdl.add(Dropout(0.5))
mdl.add( Conv2D(4096,kernel_size=(1,1),activation='relu',name='fc7'))
if withDO:
mdl.add(Dropout(0.5))
mdl.add(Conv2D(2622,kernel_size=(1,1),activation='relu',name='fc8'))
mdl.add(Flatten())
mdl.add(Activation('softmax'))
return mdl
else:
raise ValueError('not implemented')
facemodel = vgg_face_blank()
from scipy.io import loadmat
data = loadmat('vgg-face.mat', matlab_compatible=False, struct_as_record=False)
l = data['layers']
description = data['meta'][0,0].classes[0,0].description
def copy_mat_to_keras(kmodel):
kerasnames = [lr.name for lr in kmodel.layers]
prmt = (0,1,2,3)
for i in range(l.shape[1]):
matname = l[0,i][0,0].name[0]
if matname in kerasnames:
kindex = kerasnames.index(matname)
l_weights = l[0,i][0,0].weights[0,0]
l_bias = l[0,i][0,0].weights[0,1]
f_l_weights = l_weights.transpose(prmt)
assert (f_l_weights.shape == kmodel.layers[kindex].get_weights()[0].shape)
assert (l_bias.shape[1] == 1)
assert (l_bias[:,0].shape == kmodel.layers[kindex].get_weights()[1].shape)
assert (len(kmodel.layers[kindex].get_weights()) == 2)
kmodel.layers[kindex].set_weights([f_l_weights, l_bias[:,0]])
copy_mat_to_keras(facemodel)
def pred(kmodel, crpimg):
imarr = np.array(crpimg).astype(np.float32)
imarr = np.expand_dims(imarr, axis=0)
out = kmodel.predict(imarr)
best_index = np.argmax(out, axis=1)[0]
best_name = description[best_index,0]
return best_name[0]
featuremodel = Model(inputs=facemodel.layers[0].input, outputs=facemodel.layers[-2].output)
#facemodel.summary()
#featuremodel.summary()
'''
set up real time application
function1:detect your face
function2:judge wheater it is still yourself
function3:who you look like in the dataset of vgg-face(YouTube Faces dataset)
主要是后2个功能,看视频里的人是不是还是一开始的人(用相似度检测,week4的网络(featuremodel)输出特征值后
和第一张人头做相似度计算),以及看你和哪个明星相似(完整的week4网络facemodel),
相似性定义我是根据向量的余弦相似度计算的,有点迷,要是低的话,把这个以下的代码部分,再跑一遍好了
程序开始打开摄像头时,等保存了一定数量的图片后直接按ctrl+c停掉,会显示处理速度,大概每秒输出2张
存在新文件夹my_faces里
'''
import cv2
import dlib
import math
import numpy as np
import time
import os
output_dir = './my_faces'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
detector = dlib.get_frontal_face_detector()
camera = cv2.VideoCapture(0)
index = 1
def features(featmodel, crpimg):
imarr = np.array(crpimg).astype(np.float32)
imarr = np.expand_dims(imarr, axis=0)
fvec = featmodel.predict(imarr)[0,:]
normfvec = math.sqrt(fvec.dot(fvec))
return fvec/normfvec
def cosin_distance(feature1, feature2):#calculate the similarity of two vectors
dot_product = 0.0
normA = 0.0
normB = 0.0
for a, b in zip(feature1,feature2):
dot_product += a * b
normA += a ** 2
normB += b ** 2
if normA == 0.0 or normB == 0.0:
return None
else:
return dot_product / ((normA * normB) ** 0.5)
feature_initial=np.zeros(2622,dtype=np.float32)
feature_initial[0]=1.0
start = time.time()
while index>0:
try:
print('Being processed picture %s' % index)
ret, img = camera.read()
dets = detector(img, 1)
if (len(dets) > 0):
for k,d in enumerate(dets):
cv2.rectangle(img,(d.left(),d.top()),(d.right(),d.bottom()),(255,255,255))
cropimg=img[d.left():d.right(),d.top():d.bottom()]
cropimg=cv2.resize(cropimg,(224,224),interpolation=cv2.INTER_CUBIC)
#predict who you like in famous stars
similary_face=pred(facemodel, cropimg)
cv2.putText(img,'you like '+similary_face, (50, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0,0), 2)
feature=features(featuremodel, cropimg)
if index==1:
cv2.putText(img,'photograph is 100% yourself', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0,0), 2)
feature_initial=feature
time.sleep(5)
else:
#predict wheater it is still you
user_similarity=cosin_distance(feature, feature_initial)
cv2.putText(img,'photograph is '+str(int(user_similarity*100))+'% yourself', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0,0), 2)
cv2.imwrite("./my_faces/"+str(index)+".jpg",img)
#cv2.imshow('face',cropimg)
index += 1
key = cv2.waitKey(2)
except KeyboardInterrupt:
end = time.time()
print('througnput:',(end-start)/index,'frames/per second')
break
camera.release()
cv2.destroyAllWindows()