A Survey on Deep Learning for Named Entity Recognition(2020)阅读笔记

1. Summary

文章主要介绍了NER的资源(NER语料及工具),并从distributed representation for input,context encoder和tag decoder三个维度介绍了目前现有的工作,并调研了目前最具代表性的深度学习方法。最后提出了目前NER系统面临的挑战以及未来的研究方向。

2. Introduction

(1) NEs通常分为两种:generic NEs (e.g., person and location) and domain-specific NEs (e.g., proteins, enzymes, and genes)。
(2) 主流NER方法有以下四种:

  • Rule-based approaches: which do not need annotated data as they rely on hand-crafted rules.
  • Unsupervised learning approaches: which rely on unsupervised algorithms without hand-labeled training examples.
  • Feature-based supervised learning approaches: which rely on supervised learning algorithms with careful feature engineering.
  • Deep-learning based approaches: which automatically discover representations needed for the classification and/or detection from raw input in an end-to-end manner.

3. Motivation

近年来深度学习方法在多个领域取得巨大的成功,在NER系统上应用深度学习方法也成功在多个NER任务上达成SOTA。作者期望通过比较不同的深度学习架构,以获知哪些因素影响了NER的性能。

4. Content

本文可视作NER系统的百科全书,非常详尽地介绍了NER的概念,传统方法以及深度学习方法。

  • Input Representation通常包括word-level、character-level、hybrid等表征方式,最近较新的有sub-word级别的表征,可视作word和character级别间的折中。
  • Context Encoder包括了CNN、RNN、Transformer等网络结构,如今使用预训练embedding的Transformer正成为NER一种新的范式。
  • Tag Decoder常用的有MLP+Softmax、CRF、RNN和Pointer network。
  • 基于DL的NER性能在很大程度上取决于Input Representation,引入额外知识可以提升模型性能,然而是否应该引入额外知识在学界并没有达成一致。引入额外知识会影响端到端的学习和模型的通用性。此外,基于Transformer的NER系统在不使用预训练embedding和训练数据量较小时表现欠佳。
  • 同时,文章还简要介绍了使用多任务学习、迁移学习、主动学习(active learning)、强化学习和对抗学习(adversarial learning)等方法来实现NER系统。

目前在CoNLL03数据集上,Cloze-driven pretraining of self-attention networks达到SOTA(F-score93.5%);在OntoNotes5.0数据上BERT+Dice loss达到SOTA(F-score92.07%)。一些模型在NER数据上的性能表现如下:


Summary of recent works on neural NER

5. Challenges and Future Directions

  • 挑战主要包括因语言歧义性(language ambiguity)带来标注语料质量与一致性的下降,以及识别非正式文体(如tweeter和微博短评)以及语料中没见过的实体。
  • 本文提到可能的未来方向有:细粒度NER和边界检测、NER与实体联合链接、利用附加资源解决非正式文体的实体识别、基于深度学习方法的NER可拓展性(参数量太大)、使用迁移学习的NER、易于使用的NER工具包。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352