Udacity_数据分析之用Numpy和Pandas分析二维数组

1、DataFrame返回最大行并求这行的平均值和总平均值

  • pandas里面的DataFrame生成数据
import pandas as pd

# Subway ridership for 5 stations on 10 different days
ridership_df = pd.DataFrame(
    data=[[   0,    0,    2,    5,    0],
          [1478, 3877, 3674, 2328, 2539],
          [1613, 4088, 3991, 6461, 2691],
          [1560, 3392, 3826, 4787, 2613],
          [1608, 4802, 3932, 4477, 2705],
          [1576, 3933, 3909, 4979, 2685],
          [  95,  229,  255,  496,  201],
          [   2,    0,    1,   27,    0],
          [1438, 3785, 3589, 4174, 2215],
          [1342, 4043, 4009, 4665, 3033]],
    index=['05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11',
           '05-06-11', '05-07-11', '05-08-11', '05-09-11', '05-10-11'],
    columns=['R003', 'R004', 'R005', 'R006', 'R007']
)
  • 求总平均值和最大行平均值的函数
def mean_riders_for_max_station(ridership):
    '''
    Fill in this function to find the station with the maximum riders on the
    first day, then return the mean riders per day for that station. Also
    return the mean ridership overall for comparsion.
    
    This is the same as a previous exercise, but this time the
    input is a Pandas DataFrame rather than a 2D NumPy array.
    '''
    max_station = ridership.iloc[0].argmax() 
    mean_for_max = ridership[max_station].mean()
    overall_mean = ridership.values.mean()
    return (overall_mean, mean_for_max)
mean_riders_for_max_station(ridership_df)

2、array返回最大行并求这行的平均值和总平均值

import numpy as np

# Subway ridership for 5 stations on 10 different days
ridership = np.array([
    [   0,    0,    2,    5,    0],
    [1478, 3877, 3674, 2328, 2539],
    [1613, 4088, 3991, 6461, 2691],
    [1560, 3392, 3826, 4787, 2613],
    [1608, 4802, 3932, 4477, 2705],
    [1576, 3933, 3909, 4979, 2685],
    [  95,  229,  255,  496,  201],
    [   2,    0,    1,   27,    0],
    [1438, 3785, 3589, 4174, 2215],
    [1342, 4043, 4009, 4665, 3033]
])
def mean_riders_for_max_station(ridership):
    '''
    Fill in this function to find the station with the maximum riders on the
    first day, then return the mean riders per day for that station. Also
    return the mean ridership overall for comparsion.
    
    Hint: NumPy's argmax() function might be useful:
    http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
    '''
    max_station = ridership[0,:].argmax()
    mean_for_max = ridership[:,max_station].mean()
    overall_mean = ridership.mean()
    return (overall_mean, mean_for_max)
  • 以上输出结果都是:

(2342.5999999999999, 3239.9)

3、DataFrame向量化运算

# --- Quiz ---
# Cumulative entries and exits for one station for a few hours.
entries_and_exits = pd.DataFrame({
    'ENTRIESn': [3144312, 3144335, 3144353, 3144424, 3144594,
                 3144808, 3144895, 3144905, 3144941, 3145094],
    'EXITSn': [1088151, 1088159, 1088177, 1088231, 1088275,
               1088317, 1088328, 1088331, 1088420, 1088753]
})
#计算每小时进出人数的函数
def get_hourly_entries_and_exits(entries_and_exits):
    return entries_and_exits - entries_and_exits.shift(1)
get_hourly_entries_and_exits(entries_and_exits)
  • 输出结果:
ENTRIESn    EXITSn
0   NaN     NaN
1   23.0    8.0
2   18.0    18.0
3   71.0    54.0
4   170.0   44.0
5   214.0   42.0
6   87.0    11.0
7   10.0    3.0
8   36.0    89.0
9   153.0   333.0

4、DataFrame applymap

  • 使用示例
import pandas as pd
if True:
    df = pd.DataFrame({
        'a': [1, 2, 3],
        'b': [10, 20, 30],
        'c': [5, 10, 15]
    })
    def add_one(x):
        return x + 1
    print(df.applymap(add_one))
  • 输出结果:
   a   b   c
0  2  11   6
1  3  21  11
2  4  31  16
  • 把分数转化为等级

The conversion rule is:
90-100 -> A
80-89 -> B
70-79 -> C
60-69 -> D
0-59 -> F

  • 实现函数:
grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)    
def convert_grade(grade):
    if grade >= 90:
        return 'A'
    elif grade >= 80:
        return 'B'
    elif grade >= 70:
        return 'C'
    elif grade >= 60:
        return 'D'
    else:
        return 'F'
def convert_grades(grades):
    return grades.applymap(convert_grade)
print(grades_df)
convert_grades(grades_df)
  • 输出结果:
         exam1  exam2
Andre       43     24
Barry       81     63
Chris       78     56
Dan         75     56
Emilio      89     67
Fred        70     51
Greta       91     79
Humbert     65     46
Ivan        98     72
James       87     60
----------------------------
    exam1 exam2
Andre   F   F
Barry   B   D
Chris   C   F
Dan     C   F
Emilio  B   D
Fred    C   F
Greta   A   C
Humbert D   F
Ivan    A   C
James   B   D

5、DataFrame apply

案例1:
import pandas as pd

grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)

# Change False to True for this block of code to see what it does

# DataFrame apply()
if True:
    def convert_grades_curve(exam_grades):
        # Pandas has a bult-in function that will perform this calculation
        # This will give the bottom 0% to 10% of students the grade 'F',
        # 10% to 20% the grade 'D', and so on. You can read more about
        # the qcut() function here:
        # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
        return pd.qcut(exam_grades,
                       [0, 0.1, 0.2, 0.5, 0.8, 1],
                       labels=['F', 'D', 'C', 'B', 'A'])
        
    # qcut() operates on a list, array, or Series. This is the
    # result of running the function on a single column of the
    # DataFrame.
    
    # qcut() does not work on DataFrames, but we can use apply()
    # to call the function on each column separately
    
def standardize(df):
    '''
    Fill in this function to standardize each column of the given
    DataFrame. To standardize a variable, convert each value to the
    number of standard deviations it is above or below the mean.
    '''
    return df.apply(standardize_column)
def standardize_column(column):
    return (column-column.mean())/column.std()
  • 输出 exam1的等级:
    print(convert_grades_curve(grades_df['exam1']))
Andre      F
Barry      B
Chris      C
Dan        C
Emilio     B
Fred       C
Greta      A
Humbert    D
Ivan       A
James      B
Name: exam1, dtype: category
Categories (5, object): [F < D < C < B < A]
  • grades_df分数转化为等级:
    print(grades_df.apply(convert_grades_curve))
        exam1 exam2
Andre       F     F
Barry       B     B
Chris       C     C
Dan         C     C
Emilio      B     B
Fred        C     C
Greta       A     A
Humbert     D     D
Ivan        A     A
James       B     B
  • 标准化:
    standardize(grades_df)

          exam1      exam2
Andre  -2.196525    -2.186335
Barry   0.208891     0.366571
Chris   0.018990    -0.091643
Dan    -0.170911    -0.091643
Emilio  0.715295     0.628408
Fred   -0.487413    -0.418938
Greta   0.841896     1.413917
Humbert-0.803916    -0.746234
Ivan    1.284999     0.955703
James   0.588694     0.170194
案例2:
  • 1、输出每列中的最大值和平均值:
import numpy as np
import pandas as pd

df = pd.DataFrame({
    'a': [4, 5, 3, 1, 2],
    'b': [20, 10, 40, 50, 30],
    'c': [25, 20, 5, 15, 10]
})

# Change False to True for this block of code to see what it does

# DataFrame apply() - use case 2
if True:   
    print(df.apply(np.mean))
    print(df.apply(np.max))
  • 输出结果:
a     3.0
b    30.0
c    15.0
dtype: float64
a     5
b    50
c    25
dtype: int64
  • 2、输出每列中的第二大值
def second_largest_in_column(column):
    sorted_column = column.sort_values(ascending = False)
    return sorted_column.iloc[1]
def second_largest(df):
    '''
    Fill in this function to return the second-largest value of each 
    column of the input DataFrame.
    '''
    
    return df.apply(second_largest_in_column)
second_largest(df)
  • 输出结果:
a     4
b    40
c    20
dtype: int64

6、向Series中添加DataFrame

  1. 直接相加
import pandas as pd

# Adding using +
if True:
    s = pd.Series([1, 2, 3, 4])
    df = pd.DataFrame({
        0: [10, 20, 30, 40],
        1: [50, 60, 70, 80],
        2: [90, 100, 110, 120],
        3: [130, 140, 150, 160]
    })
    
    print(df)
    print('') # Create a blank line between outputs
    print(df + s)
  • 输出
    0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  52   93  134
1  21  62  103  144
2  31  72  113  154
3  41  82  123  164
  1. index相加
# Adding with axis='index'
if True:
    s = pd.Series([1, 2, 3, 4])
    df = pd.DataFrame({
        0: [10, 20, 30, 40],
        1: [50, 60, 70, 80],
        2: [90, 100, 110, 120],
        3: [130, 140, 150, 160]
    })
    
    print(df)
    print('') # Create a blank line between outputs
    print(df.add(s, axis='index'))
    # The functions sub(), mul(), and div() work similarly to add()
  • 输出:
    0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  51   91  131
1  22  62  102  142
2  33  73  113  153
3  44  84  124  164
  1. column相加
# Adding with axis='columns'
s = pd.Series([1,2,3,4])
df = pd.DataFrame({
    0: [10, 20, 30, 40],
    1: [50, 60, 70, 80],
    2: [90, 100, 110, 120],
    3: [130, 140, 150, 160]
})

print (df)
print ('') # Create a blank line between outputs
print (df.add(s, axis='columns'))
# The functions sub(), mul(), and div() work similarly to add()
  • 输出:
0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  52   93  134
1  21  62  103  144
2  31  72  113  154
3  41  82  123  164

7、标准化DateFrame的行

  • 数据
grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)
  • grades_df输出:
    exam1   exam2
Andre   43  24
Barry   81  63
Chris   78  56
Dan     75  56
Emilio  89  67
Fred    70  51
Greta   91  79
Humbert 65  46
Ivan    98  72
James   87  60
  • grades_df.mean()的输出:
# 默认输出的是按index计算的平均值
exam1    77.7
exam2    57.4
dtype: float64
  • grades_df.mean(axis='columns')的输出:
# 指定按columns输出平均值
Andre      33.5
Barry      72.0
Chris      67.0
Dan        65.5
Emilio     78.0
Fred       60.5
Greta      85.0
Humbert    55.5
Ivan       85.0
James      73.5
dtype: float64
  • 计算每人的两次成绩与两次成绩平均值的偏差并标准化:
    mean_diffs =grades_df.sub(grades_df.mean(axis='columns'),axis='index'
         exam1  exam2
Andre      9.5   -9.5
Barry      9.0   -9.0
Chris     11.0  -11.0
Dan        9.5   -9.5
Emilio    11.0  -11.0
Fred       9.5   -9.5
Greta      6.0   -6.0
Humbert    9.5   -9.5
Ivan      13.0  -13.0
James     13.5  -13.5

mean_diffs.div(grades_df.std(axis='columns'),axis='index')

    exam1   exam2
Andre   0.707107    -0.707107
Barry   0.707107    -0.707107
Chris   0.707107    -0.707107
Dan     0.707107    -0.707107
Emilio  0.707107    -0.707107
Fred    0.707107    -0.707107
Greta   0.707107    -0.707107
Humbert 0.707107    -0.707107
Ivan    0.707107    -0.707107
James   0.707107    -0.707107

8、DataFramegroupby的使用

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
values = np.array([1, 3, 2, 4, 1, 6, 4])
example_df = pd.DataFrame({
    'value': values,
    'even': values % 2 == 0,
    'above_three': values > 3 
}, index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])
  1. print (example_df)输出结果:
above_three   even  value
a       False  False      1
b       False  False      3
c       False   True      2
d        True   True      4
e       False  False      1
f        True   True      6
g        True   True      4
  1. even分组:
grouped_data = example_df.groupby('even')
    # The groups attribute is a dictionary mapping keys to lists of row indexes
print(grouped_data.groups)
  • 输出结果:
{False: ['a', 'b', 'e'], True: ['c', 'd', 'f', 'g']}
  1. evenabove_three分组:
grouped_data = example_df.groupby(['even', 'above_three'])
print(grouped_data.groups)
  • 输出结果:
{(True, False): ['c'], (False, False): ['a', 'b', 'e'], (True, True): ['d', 'f', 'g']}
  1. 求每个group的和
grouped_data = example_df.groupby('even')
print(grouped_data.sum())
  • 输出:
       above_three  value
even                     
False          0.0      5
True           3.0     16
  • 按columns计算和
grouped_data = example_df.groupby('even')
# You can take one or more columns from the result DataFrame
print(grouped_data.sum()['value'])
print ('\n') # Blank line to separate results
print(grouped_data['value'].sum())
  • 以上两个print计算结果一样:
even
False     5
True     16
Name: value, dtype: int32
  1. group实现分组后的标准化和求第二大的值
import numpy as np
import pandas as pd

values = np.array([1, 3, 2, 4, 1, 6, 4])
example_df = pd.DataFrame({
    'value': values,
    'even': values % 2 == 0,
    'above_three': values > 3 
}, index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# Change False to True for each block of code to see what it does

# Standardize each group
if True:
    def standardize(xs):
        return (xs - xs.mean()) / xs.std()
    grouped_data = example_df.groupby('even')
    print(grouped_data.groups)
    print(grouped_data['value'].apply(standardize))
if True:
    def second_largest(xs):
        sorted_xs = xs.sort(inplace=False, ascending=False)
        return sorted_xs.iloc[1]
    grouped_data = example_df.groupby('even')
    print(grouped_data['value'].apply(second_largest))
  • 输出:
# print按even分组
{False: ['a', 'b', 'e'], True: ['c', 'd', 'f', 'g']}
# print标准化
a   -0.577350
b    1.154701
c   -1.224745
d    0.000000
e   -0.577350
f    1.224745
g    0.000000
Name: value, dtype: float64
# print第二大值
even
False    1
True     4
Name: value, dtype: int64
  1. 每小时入站和出站数
ridership_df = pd.DataFrame({
    'UNIT': ['R051', 'R079', 'R051', 'R079', 'R051', 'R079', 'R051', 'R079', 'R051'],
    'TIMEn': ['00:00:00', '02:00:00', '04:00:00', '06:00:00', '08:00:00', '10:00:00', '12:00:00', '14:00:00', '16:00:00'],
    'ENTRIESn': [3144312, 8936644, 3144335, 8936658, 3144353, 8936687, 3144424, 8936819, 3144594],
    'EXITSn': [1088151, 13755385,  1088159, 13755393,  1088177, 13755598, 1088231, 13756191,  1088275]
})
def hours_for_group(entries_and_exits):
    return entries_and_exits-entries_and_exits.shift(1)
ridership_df.groupby('UNIT')[['ENTRIESn','EXITSn']].apply(hours_for_group)
  • 输出结果:
    ENTRIESn EXITSn
0   NaN     NaN
1   NaN     NaN
2   23.0    8.0
3   14.0    8.0
4   18.0    18.0
5   29.0    205.0
6   71.0    54.0
7   132.0   593.0
8   170.0   44.0

9、DataFrame合并

import pandas as pd

subway_df = pd.DataFrame({
    'UNIT': ['R003', 'R003', 'R003', 'R003', 'R003', 'R004', 'R004', 'R004',
             'R004', 'R004'],
    'DATEn': ['05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11',
              '05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11'],
    'hour': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ENTRIESn': [ 4388333,  4388348,  4389885,  4391507,  4393043, 14656120,
                 14656174, 14660126, 14664247, 14668301],
    'EXITSn': [ 2911002,  2911036,  2912127,  2913223,  2914284, 14451774,
               14451851, 14454734, 14457780, 14460818],
    'latitude': [ 40.689945,  40.689945,  40.689945,  40.689945,  40.689945,
                  40.69132 ,  40.69132 ,  40.69132 ,  40.69132 ,  40.69132 ],
    'longitude': [-73.872564, -73.872564, -73.872564, -73.872564, -73.872564,
                  -73.867135, -73.867135, -73.867135, -73.867135, -73.867135]
})

weather_df = pd.DataFrame({
    'DATEn': ['05-01-11', '05-01-11', '05-02-11', '05-02-11', '05-03-11',
              '05-03-11', '05-04-11', '05-04-11', '05-05-11', '05-05-11'],
    'daten': ['05-01-11', '05-01-11', '05-02-11', '05-02-11', '05-03-11',
              '05-03-11', '05-04-11', '05-04-11', '05-05-11', '05-05-11'],
    'hour': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'latitude': [ 40.689945,  40.69132 ,  40.689945,  40.69132 ,  40.689945,
                  40.69132 ,  40.689945,  40.69132 ,  40.689945,  40.69132 ],
    'longitude': [-73.872564, -73.867135, -73.872564, -73.867135, -73.872564,
                  -73.867135, -73.872564, -73.867135, -73.872564, -73.867135],
    'pressurei': [ 30.24,  30.24,  30.32,  30.32,  30.14,  30.14,  29.98,  29.98,
                   30.01,  30.01],
    'fog': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'rain': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'tempi': [ 52. ,  52. ,  48.9,  48.9,  54. ,  54. ,  57.2,  57.2,  48.9,  48.9],
    'wspdi': [  8.1,   8.1,   6.9,   6.9,   3.5,   3.5,  15. ,  15. ,  15. ,  15. ]
})
subway_df.merge(weather_df,on =['DATEn','hour','latitude','longitude'],how = 'inner')
subway_df.merge(weather_df,left_on =['DATEn','hour','latitude','longitude'],right_on =['daten','hour','latitude','longitude'],how = 'inner')
  • 输出结果:


    print1
print2
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容