跟着Nature Communication学数据分析:R语言利用宏基因组的相对丰度数据做主坐标分析(PcoA))

论文

Microbiomes in the Challenger Deep slope and bottom-axis sediments

https://www.nature.com/articles/s41467-022-29144-4#code-availability

对应代码链接

https://github.com/ucassee/Challenger-Deep-Microbes

论文里提供了大部分图的数据和代码,很好的学习材料,感兴趣的同学可以找来参考,今天的推文重复一下论文中的Figure2b

image.png

部分数据集截图如下

相对丰度数据

image.png

分组数据

image.png

读取数据集

读取相对丰度数据

otu<-read.delim("data/20220602/dat01.txt",
                sep="\t",
                header = TRUE,
                row.names = 1,
                check.names = FALSE,
                stringsAsFactors = FALSE)
dim(otu)
head(otu)

对数据转置

otu <- data.frame(t(otu))
otu[1:6,1:6]

读取分组数据

group<-read.delim("data/20220602/dat02.txt",
                  header=TRUE,
                  sep="\t",
                  stringsAsFactors = FALSE)
head(group)

这个分组数据和论文中提供的代码的分组信息还少一些内容,我们再给它增加几列

library(tidyverse)

group %>% 
  mutate(Site=case_when(
    Group == "Slope" ~ "None-CD",
    TRUE ~ "CD"
  ),
  high=case_when(
    `Depth (m)`< 6000 ~ '5k',
    #`Depth (m)`>=6000 & `Depth (m)` < 7000 ~ '6k',
    `Depth (m)`>=6000 & `Depth (m)` < 8000 ~ '7k',
    `Depth (m)`>=8000 & `Depth (m)` < 9000 ~ '8k',
    `Depth (m)`>=9000 & `Depth (m)` < 10000 ~ '9k',
    `Depth (m)`>=10000 ~ '10k'
  ),
  position=case_when(
    `Depth (m)`< 8000 ~ 'North',
    `Depth (m)`>= 8000 & `Depth (m)`< 10000 ~ 'South',
    TRUE ~ 'axis'
  )) -> new.group

这个分组信息可能和原文中有差别

主坐标分析代码

library(vegan)
distance <- vegdist(otu, method = 'bray')
pcoa <- cmdscale(distance, k = (nrow(otu) - 1), eig = T)


ordiplot(scores(pcoa)[ ,c(1, 2)], type = 't')

summary(pcoa)

构造作图数据

point <- data.frame(pcoa$point)
point %>% head()

species <- wascores(pcoa$points[,1:2], otu)
species %>% head()
pcoa_eig <- (pcoa$eig)[1:2] / sum(pcoa$eig)
pcoa_eig

sample_site <- data.frame({pcoa$point})[1:2]
sample_site$Sample <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCoA1', 'PCoA2')
sample_site <- merge(sample_site, new.group, by = 'Sample', all.x = T)
sample_site %>% head()

给准备好的数据赋予因子水平

sample_site$Site <- factor(sample_site$Site, 
                           levels = c('None-CD', 'CD'))
sample_site$high <- factor(sample_site$high, 
                           levels = c('5k', '7k', '8k', '9k', '10k'))
sample_site$Position <- factor(sample_site$position, 
                               levels = c('North', 'South', 'axis'))

构造画边界的数据

group_border <- plyr::ddply(sample_site, 'Site', 
                      function(df) df[chull(df[[2]], df[[3]]), ]) 

画图代码

ggplot(sample_site, aes(PCoA1, PCoA2, group = Site)) +
  theme(panel.grid = element_line(color = 'gray', 
                                  linetype = 2, size = 0.1), 
        panel.background = element_rect(color = 'black', 
                                        fill = 'transparent'), 
        legend.key = element_rect(fill = 'transparent')) + #去掉背景框
  geom_vline(xintercept = 0, color = 'gray', size = 0.4) + 
  geom_hline(yintercept = 0, color = 'gray', size = 0.4) +
  geom_polygon(data = group_border, aes(fill = Site),alpha=0.1) +
  guides(fill = guide_legend(order = 1), 
         shape = guide_legend(order = 2), 
         color = guide_legend(order = 3)) +
  scale_shape_manual(values = c(17, 16,15,12,10)) + 
  geom_point(aes(color = position, shape = high), 
             size = 2.5, alpha = 0.8) + 
  labs(x = paste('PCoA axis1: ', 
                 round(100 * pcoa_eig[1], 2), '%'),
       y = paste('PCoA axis2: ', 
                 round(100 * pcoa_eig[2], 2), '%')) +
  annotate('text', label = 'Slope', 
           x = -0.31, y = -0.15, 
           size = 5, colour = '#C673FF') +
  annotate('text', label = 'Bottom-axis', 
           x = 0.32, y = 0.05, 
           size = 5, colour = '#FF985C')

论文中提供的代码出图效果如下

image.png

这个图和最终论文中的图还是有些差别的,主要是图例的位置和边框,如何用代码把图例的位置调整到右下角并添加一个边框,这个另起推文来介绍吧

示例数据和代码可以给推文点赞,然后点击在看,最后在公众号后台留言20220602获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容