#!/usr/bin/python
#coding=utf-8
import copy, numpyas np
np.random.seed(0)
# compute sigmoid nonlinearity
def sigmoid(x):
output =1 / (1 + np.exp(-x))
return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
return output * (1 - output)
# training dataset generation
int2binary = {}
binary_dim =8
largest_number =pow(2, binary_dim)
binary = np.unpackbits(
np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for iin range(largest_number):
int2binary[i] = binary[i]
# input variables
alpha =0.1
input_dim =2
hidden_dim =16
output_dim =1
# initialize neural network weights
synapse_0 =2 * np.random.random((input_dim, hidden_dim)) -1
synapse_1 =2 * np.random.random((hidden_dim, output_dim)) -1
synapse_h =2 * np.random.random((hidden_dim, hidden_dim)) -1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
# training logic
"""
这里其实是随机生成一个样本,这个样本包含二进制的a、b、c,其中c=a+b,a_int、b_int、c_int分别是是a、b、c对应的整数格式
"""
for jin range(60000):
# generate a simple addition problem (a + b = c)
a_int = np.random.randint(largest_number /2)# int version
a = int2binary[a_int]# binary encoding
b_int = np.random.randint(largest_number /2)# int version
b = int2binary[b_int]# binary encoding
# true answer
c_int = a_int + b_int
c = int2binary[c_int]
# where we'll store our best guess (binary encoded)
d = np.zeros_like(c)# 这个d在后面用来存我们模型对c的预测值
overallError =0 # 这个是全局误差,用来观察模型效果
layer_2_deltas =list()
layer_1_values =list()
layer_1_values.append(np.zeros(hidden_dim))
# moving along the positions in the binary encoding
for positionin range(binary_dim):
# generate input and output
X = np.array([[a[binary_dim - position -1], b[binary_dim - position -1]]])
y = np.array([[c[binary_dim - position -1]]]).T
# hidden layer (input ~+ prev_hidden)
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
# output layer (new binary representation)
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# did we miss?... if so by how much?
layer_2_error = y - layer_2
layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
overallError += np.abs(layer_2_error[0])
# decode estimate so we can print it out
d[binary_dim - position -1] = np.round(layer_2[0][0])
# store hidden layer so we can use it in the next timestep
layer_1_values.append(copy.deepcopy(layer_1))
future_layer_1_delta = np.zeros(hidden_dim)
for positionin range(binary_dim):
X = np.array([[a[position], b[position]]])
layer_1 = layer_1_values[-position -1]
prev_layer_1 = layer_1_values[-position -2]
# error at output layer
layer_2_delta = layer_2_deltas[-position -1]
# error at hidden layer
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + \
layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
# let's update all our weights so we can try again
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
synapse_0_update += X.T.dot(layer_1_delta)
future_layer_1_delta = layer_1_delta
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
synapse_0_update *=0
synapse_1_update *=0
synapse_h_update *=0
# print out progress
if (j %1000 ==0):
print("Error:" +str(overallError) )
print("Pred:" +str(d) )
print("True:" +str(c) )
out =0
for index, xin enumerate(reversed(d)):
out += x *pow(2, index)
print(str(a_int) +" + " +str(b_int) +" = " +str(out) )
print("------------" )