基因组学的定义:
基因组学的目的是对一个生物体所有基因进行集体表征和量化,并研究它们之间的相互关系及对生物体的影响 。基因组学还包括基因组测序和分析,通过使用高通量DNA测序和生物信息学来组装和分析整个基因组的功能和结构。基因组学同时也研究基因组内的一些现象如上位性(一个基因对另一个基因的影响)、多效性(一个基因影响多个性状)、杂种优势(杂交活力)以及基因组内基因座和等位基因之间的相互作用等。
功能基因组学:
功能基因组学是分子生物学的一个领域,它试图利用基因组项目(如基因组测序项目)产生的大量数据来描述基因(和蛋白质)的功能和相互作用 。功能基因组学侧重于基因转录、翻译和蛋白质-蛋白质相互作用的动态变化,与基因组提供的DNA序列或结构等静态信息截然相反。功能基因组学试图从基因、RNA转录本和蛋白质产品三个水平上回答有关DNA功能的问题。功能基因组学研究的一个关键特征是它们对这些问题的全基因组方法,通常涉及高通量方法,而不是传统的“个案基因”方法。
基因组学的一个主要分支仍然关注于对各种生物体基因组的测序,但全基因组的知识为功能基因组学关注各种条件下基因表达的模式创造了可能。涉及到的最重要的工具是芯片技术和生物信息学 。
结构基因组学:
试图描述由给定基因组编码的每个蛋白质的三维结构 。这种基于基因组的方法允许通过实验和建模相结合方法高通量进行蛋白结构鉴定。结构基因组学与传统结构预测的主要区别在于,结构基因组学试图确定基因组编码的每一种蛋白质的结构,而不是专注于一种特定的蛋白质。随着全基因组序列的公开,通过实验和建模相结合的方法可以更快完成蛋白质结构预测,特别是由于大量测序基因组和以前解析蛋白质结构的公开,使得科学家可以根据已有同源物的结构对蛋白质结构进行建模。
结构基因组学涉及到大量的结构鉴定方法,包括利用基因组序列的试验方法、基于已知同源蛋白质的序列或结构同源性基础上的建模方法、或基于没有任何已知结构同源性蛋白质的化学和物理特性的建模方法。与传统的结构生物学相反,结构基因组学来确定的蛋白质结构常常(但并不总是)先于对其功能的了解。这对结构生物信息学提出了新的挑战,比如要从蛋白质的三维结构中确定其功能。
表观基因组学:
表观基因组学是研究表观基因组,即生物体中所有表观修饰的遗传物质的学科 。表观遗传修饰是对细胞DNA或组蛋白的可逆修饰,在不改变DNA序列的情况下影响基因表达。两个最具特征的表观遗传修饰是DNA甲基化和组蛋白修饰。表观遗传修饰在基因表达和调控中起着重要作用,并参与许多细胞过程,如分化/发育和肿瘤发生。直到最近,通过基因组高通量分析,才可能在全基因组范围研究表观遗传学
宏基因组学:
宏基因组学是研究直接从环境样品中提取的遗传物质的元基因组的学科 。宏基因组学也称为环境基因组学、生态基因组学或群落基因组学。传统的微生物学和微生物基因组测序依赖于培养的克隆培养物,而早期的环境基因测序克隆了特定的基因(通常是16S rRNA基因),从而获得自然群体的多样性。这些工作表明,绝大多数微生物的多样性被基于菌落培养的方法所遗漏。宏基因组使用“散弹枪”测序或大规模平行焦磷酸测序,可以无偏好地获得样本群体中所有微生物成员的基因信息。由于宏基因组学能够揭示此前被隐藏的微生物多样性,它为观察微生物世界提供了一个强有力的工具,其结果有可能彻底改变对整个生命世界的认知。
基因组学的应用
基因组学在许多领域包括医学、生物技术、人类学和其他社会科学等得到了应用。
基因组医学
新一代基因组技术使临床医生和生物医学研究人员能够大幅增加从大规模研究群体中收集的基因组数据量。当结合新的信息学方法将多种数据与基因组数据进行集成后,研究人员就能够更好地理解药物反应和疾病的遗传基础 。例如,All of Us 研究计划旨在收集100万参与者的基因组序列数据,并成为精准医学研究平台的重要组成部分。
合成生物学和生物工程
基因组知识的增长使得合成生物学的应用越来越复杂。2010年,克雷格·文特尔研究所的研究人员宣布,成功部分合成了一种细菌-来源于生殖支原体基因组的合成支原体。
自然资源保护
自然资源保护主义者可以利用基因组测序收集到的信息,更好地评估物种保护的关键遗传因素,如种群的遗传多样性,或个体是否为隐性遗传疾病的携带者。通过使用基因组数据来评估进化过程的影响,并检测特定种群的变异模式,自然资源保护主义者可以制定计划,在不像标准遗传学方法那样留下许多未知变量的情况下,帮助特定物种。
基因组大小
基因组大小是一个拷贝的单倍体基因组中DNA碱基对的总数。
基因组大小与原核生物和低等真核生物的形态复杂性呈正相关 。然而,在软体动物和上述所有其它高等真核生物之后,这种相关性已不再存在 ,主要是因为重复DNA的缘故。
基因组改变
生物体所有细胞都源自同一个单细胞,因此它们应该具有相同的基因组。但是,在某些情况下,细胞间会出现差异。细胞分裂期间的DNA复制和环境诱变剂的作用都可导致体细胞发生突变。在某些情况下,这种突变会导致癌症,因为它们会导致细胞更快地分裂并侵入周围组织。 在减数分裂期间,二倍体细胞分裂两次以产生单倍体生殖细胞。在此过程中,重组导致遗传物质从同源染色体重新洗牌,因此每个配子具有独特的基因组。