2021-02-04:第一年农场有1只成熟的母牛A,往后的每年:①每一只成熟的母牛都会生一只母牛 ②每一只新出生的母牛都在出生的第三年成熟 ③每一只母牛永远不会死 。请问N年后牛的数量是多少 ?

2021-02-04:第一年农场有1只成熟的母牛A,往后的每年:①每一只成熟的母牛都会生一只母牛 ②每一只新出生的母牛都在出生的第三年成熟 ③每一只母牛永远不会死 。请问N年后牛的数量是多少 ?
福哥答案2021-02-04:

举例:
N=6,第1年1头成熟母牛记为a;
第2年a生了新的小母牛,记为b,总牛数为2;
第3年a生了新的小母牛,记为c,总数为3;
第4年a生了新牛d,总数4;
第5年b成熟了,ab分别生了一只,总数为6;
第6年c也成熟了,abc分别生了一只,总数为9,故返回9.

递推式是f(n)=f(n-1)+f(n-3)。

如果某个递归,除了初始项之外,具有如下的形式:
F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck 和k都是常数)。
并且这个递归的表达式是严格的、不随条件转移的。那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)。

代码用golang编写,代码如下:

package main

import "fmt"

func main() {
    fmt.Println(c3(6))
}
func c3(n int) int {
    if n < 1 {
        return 0
    }
    if n == 1 || n == 2 || n == 3 {
        return n
    }
    base := [][]int{
        {1, 1, 0},
        {0, 0, 1},
        {1, 0, 0}}
    res := matrixPower(base, n-3)
    return 3*res[0][0] + 2*res[1][0] + res[2][0]
}

//矩阵的p次方
func matrixPower(m [][]int, p int) [][]int {
    mLen := len(m)
    m0Len := len(m[0])
    res := make([][]int, mLen)
    for i := 0; i < mLen; i++ {
        res[i] = make([]int, m0Len)
    }

    for i := 0; i < mLen; i++ {
        res[i][i] = 1
    }

    tmp := m
    for ; p != 0; p >>= 1 {
        if p&1 != 0 {
            res = muliMatrix(res, tmp)
        }
        tmp = muliMatrix(tmp, tmp)
    }
    return res
}

//两个矩阵相乘
func muliMatrix(m1 [][]int, m2 [][]int) [][]int {
    m1Len := len(m1)
    m20Len := len(m2[0])
    m2Len := len(m2)
    res := make([][]int, m1Len)
    for i := 0; i < m1Len; i++ {
        res[i] = make([]int, m20Len)
    }

    for i := 0; i < m1Len; i++ {
        for j := 0; j < m20Len; j++ {
            for k := 0; k < m2Len; k++ {
                res[i][j] += m1[i][k] * m2[k][j]
            }
        }
    }

    return res
}

执行结果如下:


在这里插入图片描述

答案参考左神的java代码
评论

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容