m基于EM参数估计的Gamma随机过程电池剩余寿命预测matlab仿真

1.算法描述

近年来,为了应对传统化石燃料枯竭和环境恶化,锂离子电池在新能源汽车和电网储能等领域取得了广泛应用。然而,锂离子电池在使用过程中的性能衰减是关键技术难点,制约了电池的剩余使用寿命(Remaining useful life, RUL)。锂离子电池是一个复杂的电化学系统,在工作过程中会产生SEI膜增长、析锂和电解液氧化等副反应。电池副反应将导致电池的性能衰减,从宏观上表现为容量减少和内阻增加,从而降低了电池的使用寿命。准确预测锂离子电池在不同使用条件下的剩余使用寿命不仅能保证系统的安全可靠运行,并且能实现电池剩余价值的最大化利用。因此剩余寿命预测对于电池管理和梯次利用至关重要,本文将为锂离子电池的剩余寿命预测技术提供有力支撑。


EM参数估计


EM算法算是机器学习中有些难度的算法之一,也是非常重要的算法,曾经被誉为10大数据挖掘算法之一,从标题可以看出,EM专治带有隐变量的参数估计,我们熟悉的MLE(最大似然估计)一般会用于不含有隐变量的参数估计,应用场景不同。



最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。为了同时估计参数和隐藏状态,将期望最大化(EM)与扩展卡尔曼滤波和平滑结合在一起,其目的是对未知隐藏状态的不确定估计进行积分,并根据给定的观测数据优化参数的边际似然性。通过使用扩展卡尔曼滤波和平滑算法,可以实现对后验分布更精确的估计。


Gamma随机过程


伽马过程(Gamma Process)是随机过程理论中一类重要过程Lévy过程的一种,其增量服从独立的gamma分布,可以用于描述单调递增的变化过程,属于Lévy subordinator中的一种,gamma过程,通常记作,由两个正参数决定,其中称为形状参数,控制了跳跃点到达的频率,称为尺度参数,控制了跳跃的跃度。同时,该过程假设在时刻t=0时,其值为0,即在初始时刻位置在原点。


使用伽马函数定义了许多概率分布,例如伽马分布,Beta分布,狄利克雷分布,卡方分布和学生t分布等。 对于数据科学家,机器学习工程师,研究人员来说,伽马函数可能是一种最广泛使用的函数,因为它已在许多分布中使用。然后将这些分布用于贝叶斯推理,随机过程(例如排队模型),生成统计模型(例如潜在狄利克雷分配)和变分推理。


2.仿真效果预览

matlab2022a仿真结果如下:



3.MATLAB核心程序

for i = 1:Iter

i

ykt  = yk;

ykt1 = [0,yk(1:end-1)];

xkt  = xk;

xkt1 = [0,xk(1:end-1)];


%粒子滤波

if i == 1

[Exk,Ws]   = func_Particlefilter(ykt,xkt,c0,delta0);

[Exk1,Ws]  = func_Particlefilter(xkt1,ykt1,c0,delta0);

[Exklog,Ws]= func_Particlefilter(log(xk_xk1),ykt1,c0,delta0);

else

[Exk,Ws]   = func_Particlefilter(ykt,xkt,c_(i-1),delta_(i-1));

[Exk1,Ws]  = func_Particlefilter(xkt1,ykt1,c_(i-1),delta_(i-1));

[Exklog,Ws]= func_Particlefilter(log(xk_xk1),log(ykt1),c_(i-1),delta_(i-1));

end


%E步骤

if i == 1

E1    = sum(a0*dt*log(epls0) - log(gamma(a0*dt))+(a0*dt-1)*Exklog-epls0*(Exk-Exk1));

E2    = sum(-log(delta0)-0.5*log(2*pi)-1/(2*delta0^2)*(yk.^2-2*yk.*c0.*Exk+c0^2.*Exk.^2));

theta = E1+E2;

else

E1    = sum(a_(i)*dt*log(epls_(i)) - log(gamma(a_(i)*dt))+(a_(i)*dt-1)*mean(log(xk_xk1))-epls_(i)*(Exk-Exk1));

E2    = sum(-log(delta_(i-1))-0.5*log(2*pi)-1/(2*delta_(i-1)^2)*(yk.^2-2*yk.*c_(i-1).*Exk+c_(i-1)^2.*Exk.^2));

theta = E1+E2;

end


%M步骤

if i == 1

a        = Exk(end)/t(end);

epls     = a*t(end)/max(Exk(end),1);

else

a        = Exk(end)/t(end);

epls     = a*t(end)/max(Exk(end),1);

end

c        = sum(yk.*Exk)./sum(Exk.^2);

delta    = sqrt(1/n*sum(yk.^2 - 2*yk.*c.*Exk + c^2.*Exk.^2));

a_(i+1)    = a;

epls_(i+1) = epls;

c_(i+1)    = c;

delta_(i+1)= delta;

end

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容