参数估计与无参估计

参数估计(parameter estimation),统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造估计量的方法讲,有矩法估计、最小二乘估计、似然估计、贝叶斯估计等。要处理两个问题:(1)求出未知参数的估计量;(2)在一定信度(可靠程度)下指出所求的估计量的精度。信度一般用概率表示,如可信程度为95%;精度用估计量与被估参数(或待估参数)之间的接近程度或误差来度量。

总结:也就是对要求解的未知预设其分布,然后求解分布的参数

无参数估计:如果一个估计问题所涉及的分布未知或不能用有穷参数来刻划,称这种估计为非参数估计。一般由样本估计未知分布函数或未知概率密度,由样本估计某一对称分布的分布中心都是非参数估计。常被应用于测验分数统计中

总结:不对未知预设分布,采用其他方法进行估计

这里贴一个网上看到的对正态分布的理解,我觉得很厉害

分数、身高、体重、人的性格等等等等,太多的统计量都符合正态/高斯分布,至少是近似正态分布。粗略地说,正态分布就是中庸的个体最多,越优秀和越粗劣的个体越少的分布。你想想看,其实很多事情都近似符合这个规律。

这是为什么呢?自然界出现的事物,往往都有其复杂的原因,一个人的身高,应该有很多原因都会影响它,为什么大量的人的身高却会服从高斯分布呢?

这可以用大数定律来解释,大数定理说,无论符合哪种概率类型的独立同分布变量,只要个数足够多,其和都服从高斯分布。也就是说,如果不确定的因素非常多,它们的共同作用,很可能就服从高斯分布,这个定律可以从任何一本初等概率论的书里得到。

所以,在不知道一个统计量具体服从什么分布时,假设它是服从高斯概率密度是合适的。

其次,高斯概率密度在所有给定均值和方差的概率密度函数中,具有最大的熵。熵越大表示随机变量的不确定性越大,这说明服从高斯分布的随机变量,其无序性最大。你也可以理解这种无序性的最大化来自于高斯概率密度其实是由无穷个独立同分布的随机变量小砖块叠加而成,因为小砖块太多,其和就变的没有规律可循。

直观地看,还有什么比倒钟字形的正态分布更普遍的呢?如果峰值靠左或者靠右,或者产生了重尾现象,数据里一定藏着更丰富的结构,这样的数据既然具有了更多的结构,其熵就会下降,此时就要用比高斯概率密度函数更精细的概率密度函数来拟合。

总结:数学学活了,是真厉害....

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容