Flink VS Spark 部署模式对比

本文主要对Flink和Spark集群的standalone模式及on yarn模式进行分析对比。Flink与Spark的应用调度和执行的核心区别是Flink不同的job在执行时,其task同时运行在同一个进程TaskManager进程中;Spark的不同job的task执行时,会启动不同的executor来调度执行,job之间是隔离的。

Standalone模式

Flink 和Spark均支持standalone模式(不依赖其他集群资源管理和调度)的部署,启动自身的Master/Slave架构的集群管理模式,完成应用的调度与执行。

  • Flink

standalone-flink.jpg

  • Spark


    standalone-spark.jpb.jpg

On-yarn模式

Flink on Yarn 模式,其ApplicationMaster实现对JobManager的封装,作为该job的核心,完成executionGraph的生成,task的分发,运行结果的处理等;而YarnTaskManager则继承至TaskManager,完成task的运行。

Spark on Yarn 模式下,根据driver及业务逻辑运行的进程不同分为yarn-client和yarn-cluster模式;

Flink on Yarn

  • yarn-cluster模式

    Yarn-cluster模式下,Flink提交应用至Yarn集群,类似MR job,运行完后结束


    yarn-cluster_flink.jpg
  • yarn-session模式

    Yarn-session模式下,首先向Yarn提交一个长时运行的空应用,运行起来之后,后分别启动YarnApplicationMasterRunner/ApplicationMaster/JobManager,和N个YarnTaskManager/Container,但此时没有任务运行;
    其他Flink客户端可通过制定ApplicationId的方式提交Flink Job到此JobManager,由该JobManager完成应用的解析和调度执行。


    yarn-session_flink.jpg

Spark on Yarn

Yarn-client和yarn-cluster的主要区别在于driver运行的进程不一样:

  在yarn-client模式下,driver及业务代码逻辑运行在yarn client进程中,与applicationMaster及executor交互完成应用的调度和执行。
在Yarn-cluster模式下,应用提交至Yarn集群后,yarn client进程可以退出,driver及业务代码逻辑运行在applicationMaster进程中,与executor完成应用的调度执行。
  • Yarn-client


    yarn-client_spark2.jpg
  • Yarn-cluster


    yarn-cluster_spark.jpg

PS :

Flink和Spark在On yarn模式下的各进程核心功能对比如下

应用模块 Flink(yarn-cluster) Flink(yarn-session) Spark(Yarn-client) Spark (yarn-cluster)
job提交 flink client flink client spark client spark client
job逻辑解析与调度 YarnApplicationMasterRunner yarn-session中的YarnApplicationMasterRunner spark client (driver) ApplicationMaster
task的执行 YarnTaskManager yarn-session中的YarnTaskManager Executor Executor
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容