HDFS 文件读写过程

一、HDFS 文件读取剖析

hdfs文件读取过程
  1. 客户端通过调用FileSystem对象的open()来读取希望打开的文件。对于HDFS来说,这个对象是分布式文件系统的一个实例。
  2. DistributedFileSystem通过RPC来调用namenode,以确定文件的开头部分的块位置。对于每一块,namenode返回具有该块副本的datanode地址。此外,这些datanode根据他们与client的距离来排序(根据网络集群的拓扑)。如果该client本身就是一个datanode,便从本地datanode中读取。DistributedFileSystem 返回一个FSDataInputStream对象给client读取数据,FSDataInputStream转而包装了一个DFSInputStream对象。
  3. 接着client对这个输入流调用read()。存储着文件开头部分的块的数据节点的地址DFSInputStream随即与这些块最近的datanode相连接。
  4. 通过在数据流中反复调用read(),数据会从datanode返回client。
  5. 到达块的末端时,DFSInputStream会关闭与datanode间的联系,然后为下一个块找到最佳的datanode。client端只需要读取一个连续的流,这些对于client来说都是透明的。

在读取的时候,如果client与datanode通信时遇到一个错误,那么它就会去尝试对这个块来说下一个最近的块。它也会记住那个故障节点的datanode,以保证不会再对之后的块进行徒劳无益的尝试。client也会确认datanode发来的数据的校验和。如果发现一个损坏的块,它就会在client试图从别的datanode中读取一个块的副本之前报告给namenode。

这个设计的一个重点是,client直接联系datanode去检索数据,并被namenode指引到块中最好的datanode。因为数据流在此集群中是在所有datanode分散进行的。所以这种设计能使HDFS可扩展到最大的并发client数量。同时,namenode只不过提供块的位置请求(存储在内存中,十分高效),不是提供数据。否则如果客户端数量增长,namenode就会快速成为一个“瓶颈”。

二、HDFS 文件写入剖析

hdfs文件写入过程
  1. 客户端通过在DistributedFileSystem中调用create()来创建文件。
  2. DistributedFileSystem 使用RPC去调用namenode,在文件系统的命名空间创一个新的文件,没有块与之相联系。namenode执行各种不同的检查以确保这个文件不会已经存在,并且在client有可以创建文件的适当的许可。如果检查通过,namenode就会生成一个新的文件记录;否则,文件创建失败并向client抛出一个IOException异常。分布式文件系统返回一个文件系统数据输出流,让client开始写入数据。就像读取事件一样,文件系统数据输出流控制一个DFSOutputStream,负责处理datanode和namenode之间的通信。
  3. 在client写入数据时,DFSOutputStream将它分成一个个的包,写入内部的队列,成为数据队列。数据队列随数据流流动,数据流的责任是根据适合的datanode的列表要求这些节点为副本分配新的块。这个数据节点的列表形成一个管线————假设副本数是3,所以有3个节点在管线中。
  4. 数据流将包分流给管线中第一个的datanode,这个节点会存储包并且发送给管线中的第二个datanode。同样地,第二个datanode存储包并且传给管线中的第三个数据节点。
  5. DFSOutputStream也有一个内部的包队列来等待datanode收到确认,成为确认队列。一个包只有在被管线中所有的节点确认后才会被移除出确认队列。如果在有数据写入期间,datanode发生故障, 则会执行下面的操作,当然这对写入数据的client而言是透明的。首先管线被关闭,确认队列中的任何包都会被添加回数据队列的前面,以确保故障节点下游的datanode不会漏掉任意一个包。为存储在另一正常datanode的当前数据块制定一个新的标识,并将该标识传给namenode,以便故障节点datanode在恢复后可以删除存储的部分数据块。从管线中删除故障数据节点并且把余下的数据块写入管线中的两个正常的datanode。namenode注意到块复本量不足时,会在另一个节点上创建一个新的复本。后续的数据块继续正常接收处理。只要dfs.replication.min的副本(默认是1)被写入,写操作就是成功的,并且这个块会在集群中被异步复制,直到其满足目标副本数(dfs.replication 默认值为3)。
  6. client完成数据的写入后,就会在流中调用close()。
  7. 在向namenode节点发送完消息之前,此方法会将余下的所有包放入datanode管线并等待确认。namenode节点已经知道文件由哪些块组成(通过Data streamer 询问块分配),所以它只需在返回成功前等待块进行最小量的复制。

复本的布局:Hadoop的默认布局策略是在运行客户端的节点上放第1个复本(如果客户端运行在集群之外,就随机选择一个节点,不过系统会避免挑选那些存储太满或太忙的节点。)第2个复本放在与第1个复本不同且随机另外选择的机架的节点上(离架)。第3个复本与第2个复本放在相同的机架,且随机选择另一个节点。其他复本放在集群中随机的节点上,不过系统会尽量避免相同的机架放太多复本。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容