cliff click博士无阻塞实现的Map NonBlockingHashMap
这个算法是无锁。以下尝试分析下源码。
看下kv结构.
private transient Object[] _kvs;
private static final CHM chm (Object[] kvs) { return (CHM )kvs[0]; }
private static final int[] hashes(Object[] kvs) { return (int[])kvs[1]; }
private static final Object key(Object[] kvs,int idx) { return kvs[(idx<<1)+2]; }
private static final Object val(Object[] kvs,int idx) { return kvs[(idx<<1)+3]; }
private static final boolean CAS_key( Object[] kvs, int idx, Object old, Object key ) {
return _unsafe.compareAndSwapObject( kvs, rawIndex(kvs,(idx<<1)+2), old, key );
}
private static final boolean CAS_val( Object[] kvs, int idx, Object old, Object val ) {
return _unsafe.compareAndSwapObject( kvs, rawIndex(kvs,(idx<<1)+3), old, val );
}
以上采用了一个Object数组_kvs存储数据,其中的第零个元素、第一个元素默认采用用于CHM(chm是一个内部类,主要作用于扩容,记录数据长度等,后续会详细讲)和hash码的数组,从第二个元素用于真正的数据存储,偶数位存储key,奇数位存储value,不是ConcurrentHashMap一样将(key,value),作为一个元素整体来存储,至于为什么这样?我没找到相关资料。NonBlockingHashMap默认存储32个元素,共66个数组。
主要api分别是get、put、putIfAbsent、remove 、size 。
@Override
public TypeV get( Object key ) {
final int fullhash= hash (key); // throws NullPointerException if key is null
final Object V = get_impl(this,_kvs,key,fullhash);
assert !(V instanceof Prime); // Never return a Prime
return (TypeV)V;
}
@Override
public TypeV put ( TypeK key, TypeV val ) { return putIfMatch( key, val, NO_MATCH_OLD); }
@Override
public TypeV putIfAbsent( TypeK key, TypeV val ) { return putIfMatch( key, val, TOMBSTONE ); }
@Override
public TypeV remove ( Object key ) { return putIfMatch( key,TOMBSTONE, NO_MATCH_OLD); }
@Override
public int size ( ) { return chm(_kvs).size(); }
NO_MATCH_OLD代表直接的put。TOMBSTONE代表对应的(key,val)不存在才插入。MATCH_ANY代表对应的(key,val)存在才插入。接着看putIfMatch:
private final TypeV putIfMatch( Object key, Object newVal, Object oldVal ) {
if (oldVal == null || newVal == null) throw new NullPointerException();
final Object res = putIfMatch( this, _kvs, key, newVal, oldVal );
assert !(res instanceof Prime);
assert res != null;
return res == TOMBSTONE ? null : (TypeV)res;
}
下面看5个参数的putIfMatch:
// --- putIfMatch ---------------------------------------------------------
// Put, Remove, PutIfAbsent, etc. Return the old value. If the returned
// value is equal to expVal (or expVal is NO_MATCH_OLD) then the put can be
// assumed to work (although might have been immediately overwritten). Only
// the path through copy_slot passes in an expected value of null, and
// putIfMatch only returns a null if passed in an expected null.
private static final Object putIfMatch( final NonBlockingHashMap topmap, final Object[] kvs, final Object key, final Object putval, final Object expVal ) {
assert putval != null;
assert !(putval instanceof Prime);
assert !(expVal instanceof Prime);
final int fullhash = hash (key); // throws NullPointerException if key null
final int len = len (kvs); // Count of key/value pairs, reads kvs.length
final CHM chm = chm (kvs); // Reads kvs[0]
final int[] hashes = hashes(kvs); // Reads kvs[1], read before kvs[0]
int idx = fullhash & (len-1);
// ---
// Key-Claim stanza: spin till we can claim a Key (or force a resizing).
int reprobe_cnt=0;
Object K=null, V=null;
Object[] newkvs=null;
while( true ) { // Spin till we get a Key slot
V = val(kvs,idx); // Get old value (before volatile read below!)
K = key(kvs,idx); // Get current key
if( K == null ) { // Slot is free?
// Found an empty Key slot - which means this Key has never been in
// this table. No need to put a Tombstone - the Key is not here!
if( putval == TOMBSTONE ) return putval; // Not-now & never-been in this table
// Claim the null key-slot
if( CAS_key(kvs,idx, null, key ) ) { // Claim slot for Key
chm._slots.add(1); // Raise key-slots-used count
hashes[idx] = fullhash; // Memoize fullhash
break; // Got it!
}
// CAS to claim the key-slot failed.
//
// This re-read of the Key points out an annoying short-coming of Java
// CAS. Most hardware CAS's report back the existing value - so that
// if you fail you have a *witness* - the value which caused the CAS
// to fail. The Java API turns this into a boolean destroying the
// witness. Re-reading does not recover the witness because another
// thread can write over the memory after the CAS. Hence we can be in
// the unfortunate situation of having a CAS fail *for cause* but
// having that cause removed by a later store. This turns a
// non-spurious-failure CAS (such as Azul has) into one that can
// apparently spuriously fail - and we avoid apparent spurious failure
// by not allowing Keys to ever change.
K = key(kvs,idx); // CAS failed, get updated value
assert K != null; // If keys[idx] is null, CAS shoulda worked
}
// Key slot was not null, there exists a Key here
// We need a volatile-read here to preserve happens-before semantics on
// newly inserted Keys. If the Key body was written just before inserting
// into the table a Key-compare here might read the uninitalized Key body.
// Annoyingly this means we have to volatile-read before EACH key compare.
newkvs = chm._newkvs; // VOLATILE READ before key compare
if( keyeq(K,key,hashes,idx,fullhash) )
break; // Got it!
// get and put must have the same key lookup logic! Lest 'get' give
// up looking too soon.
//topmap._reprobes.add(1);
if( ++reprobe_cnt >= reprobe_limit(len) || // too many probes or
K == TOMBSTONE ) { // found a TOMBSTONE key, means no more keys
// We simply must have a new table to do a 'put'. At this point a
// 'get' will also go to the new table (if any). We do not need
// to claim a key slot (indeed, we cannot find a free one to claim!).
newkvs = chm.resize(topmap,kvs);
if( expVal != null ) topmap.help_copy(newkvs); // help along an existing copy
return putIfMatch(topmap,newkvs,key,putval,expVal);
}
idx = (idx+1)&(len-1); // Reprobe!
} // End of spinning till we get a Key slot
// ---
// Found the proper Key slot, now update the matching Value slot. We
// never put a null, so Value slots monotonically move from null to
// not-null (deleted Values use Tombstone). Thus if 'V' is null we
// fail this fast cutout and fall into the check for table-full.
if( putval == V ) return V; // Fast cutout for no-change
// See if we want to move to a new table (to avoid high average re-probe
// counts). We only check on the initial set of a Value from null to
// not-null (i.e., once per key-insert). Of course we got a 'free' check
// of newkvs once per key-compare (not really free, but paid-for by the
// time we get here).
if( newkvs == null && // New table-copy already spotted?
// Once per fresh key-insert check the hard way
((V == null && chm.tableFull(reprobe_cnt,len)) ||
// Or we found a Prime, but the JMM allowed reordering such that we
// did not spot the new table (very rare race here: the writing
// thread did a CAS of _newkvs then a store of a Prime. This thread
// reads the Prime, then reads _newkvs - but the read of Prime was so
// delayed (or the read of _newkvs was so accelerated) that they
// swapped and we still read a null _newkvs. The resize call below
// will do a CAS on _newkvs forcing the read.
V instanceof Prime) )
newkvs = chm.resize(topmap,kvs); // Force the new table copy to start
// See if we are moving to a new table.
// If so, copy our slot and retry in the new table.
if( newkvs != null )
return putIfMatch(topmap,chm.copy_slot_and_check(topmap,kvs,idx,expVal),key,putval,expVal);
// ---
// We are finally prepared to update the existing table
while( true ) {
assert !(V instanceof Prime);
// Must match old, and we do not? Then bail out now. Note that either V
// or expVal might be TOMBSTONE. Also V can be null, if we've never
// inserted a value before. expVal can be null if we are called from
// copy_slot.
if( expVal != NO_MATCH_OLD && // Do we care about expected-Value at all?
V != expVal && // No instant match already?
(expVal != MATCH_ANY || V == TOMBSTONE || V == null) &&
!(V==null && expVal == TOMBSTONE) && // Match on null/TOMBSTONE combo
(expVal == null || !expVal.equals(V)) ) // Expensive equals check at the last
return V; // Do not update!
// Actually change the Value in the Key,Value pair
if( CAS_val(kvs, idx, V, putval ) ) {
// CAS succeeded - we did the update!
// Both normal put's and table-copy calls putIfMatch, but table-copy
// does not (effectively) increase the number of live k/v pairs.
if( expVal != null ) {
// Adjust sizes - a striped counter
if( (V == null || V == TOMBSTONE) && putval != TOMBSTONE ) chm._size.add( 1);
if( !(V == null || V == TOMBSTONE) && putval == TOMBSTONE ) chm._size.add(-1);
}
return (V==null && expVal!=null) ? TOMBSTONE : V;
}
// Else CAS failed
V = val(kvs,idx); // Get new value
// If a Prime'd value got installed, we need to re-run the put on the
// new table. Otherwise we lost the CAS to another racing put.
// Simply retry from the start.
if( V instanceof Prime )
return putIfMatch(topmap,chm.copy_slot_and_check(topmap,kvs,idx,expVal),key,putval,expVal);
}
}
NonBlockingHashMap类几乎每一行都有注释,这个方法是我们put的主逻辑。分成三个部分来看,无论被哪个接口调用时候,第一步是根据key hashcode来定位,假如已经存在数据,并且两个key不相等,则线性探测+1,继续循环,假如不存在数据,则用cas存储key,若失败表示有并发则线性探测+1,继续循环。第二步如果失败的次数达到一定的程度(map总容量的1/4+10)或者key==TOMBSTONE或者newkvs为null,V为null并且需要增加value而现在map容量过小或者V是Prime类型,那我们需要扩容。第三步用CAS更新所对应value。假如失败,然后查看是否可以重试,或者需要往新的kvs里面插入(扩容情况)。以上详细讲。然后是扩容。
第一步将多余的注释和代码删除后得到如下代码:
while( true ) { // Spin till we get a Key slot
V = val(kvs,idx); // Get old value (before volatile read below!)
K = key(kvs,idx); // Get current key
if( K == null ) { // Slot is free?
if( putval == TOMBSTONE ) return putval; // Not-now & never-been in this table
if( CAS_key(kvs,idx, null, key ) ) { // Claim slot for Key
chm._slots.add(1); // Raise key-slots-used count
hashes[idx] = fullhash; // Memoize fullhash
break; // Got it!
}
K = key(kvs,idx); // CAS failed, get updated value
assert K != null; // If keys[idx] is null, CAS shoulda worked
}
newkvs = chm._newkvs; // VOLATILE READ before key compare
if( keyeq(K,key,hashes,idx,fullhash) )
break; // Got it!
if( ++reprobe_cnt >= reprobe_limit(len) || // too many probes or
key == TOMBSTONE ) { // found a TOMBSTONE key, means no more keys
newkvs = chm.resize(topmap,kvs);
if( expVal != null ) topmap.help_copy(newkvs); // help along an existing copy
return putIfMatch(topmap,newkvs,key,putval,expVal);
}
idx = (idx+1)&(len-1); // Reprobe!
}
2-3行,根据前面hash码计算出的idx来定位对象组_kvs中的K和V。
4-13行,处理当发现K==null的情况,这种情况下假如调用的是remove方法,可以直接结束。否则就cas将key填入对应的下标。如果成功则增加size(后面会详细讲,这是个单独的类)。并且将计算出的fullhash填入hashes以备后用。然后直接跳出循环。
15-18行,假如cas操作失败,或则K!=null,那么我们就得对比K与我们尝试的key的值(传入的hashes显然是之前存入,用于此时的对比),这里的第15行比较特别:newkvs = chm._newkvs; 因为_newkvs是volatile变量,所以先读_newkvs的这个volatile read的语义能够确保接下来,K读到的数据是初始化完全的,从而能够参与equals对比。假如对比的结果是true,说明找对了K,则跳出这个循环。
20-26行,到了这里说明K不对,我们就要继续找对的。首先增加一个reprobe_cnt 用于统计失败次数。如果失败的次数达到一定的程度(map总容量的1/4+10)或者key==TOMBSTONE,则扩容。
28行,向右移动一个节点查再次查找。
第二部分扩容:
if( putval == V ) return V; // Fast cutout for no-change
if( newkvs == null && // New table-copy already spotted?
// Once per fresh key-insert check the hard way
((V == null && chm.tableFull(reprobe_cnt,len)) ||
V instanceof Prime) )
newkvs = chm.resize(topmap,kvs); // Force the new table copy to start
if( newkvs != null )
return putIfMatch(topmap,chm.copy_slot_and_check(topmap,kvs,idx,expVal),key,putval,expVal);
第一部分的代码包含一部分第二部分代码
1行,假如put进来的val与原来的值相同,则不需要做工作直接返回。
2-6行,newkvs为null,V为null并且需要增加value而现在map容量过小或者V是Prime类型,那我们需要扩容,得到新的newkvs。
7-8行,如果返现旧值新的kvs已经构造了,我们尝试先将旧值复制到新的kvs上(此过程可能需要协助复制旧kvs的一部分数据),然后接着将当前值put进新的kvs。
第三部分:
while( true ) {
assert !(V instanceof Prime);
if( expVal != NO_MATCH_OLD && // Do we care about expected-Value at all?
V != expVal && // No instant match already?
(expVal != MATCH_ANY || V == TOMBSTONE || V == null) &&
!(V==null && expVal == TOMBSTONE) && // Match on null/TOMBSTONE combo
(expVal == null || !expVal.equals(V)) ) // Expensive equals check at the last
return V; // Do not update!
if( CAS_val(kvs, idx, V, putval ) ) {
if( expVal != null ) {
// Adjust sizes - a striped counter
if( (V == null || V == TOMBSTONE) && putval != TOMBSTONE ) chm._size.add( 1);
if( !(V == null || V == TOMBSTONE) && putval == TOMBSTONE ) chm._size.add(-1);
}
return (V==null && expVal!=null) ? TOMBSTONE : V;
}
V = val(kvs,idx); // Get new value
if( V instanceof Prime )
return putIfMatch(topmap,chm.copy_slot_and_check(topmap,kvs,idx,expVal),key,putval,expVal);
}
我觉得第三部分也就最后三句可讲解下,若cas设置V失败,则重新获取V,若V是Prime类型,则先协助久的kvs完成复制,然后往新的kvs插入数据。若不是Prime类型,则继续循环,这里有个问题,会不会死循环?单从代码来看有可能。
下面试着写下扩容resize方法源码分析:
private final Object[] resize( NonBlockingHashMap topmap, Object[] kvs) {
assert chm(kvs) == this;
// Check for resize already in progress, probably triggered by another thread
Object[] newkvs = _newkvs; // VOLATILE READ
if( newkvs != null ) // See if resize is already in progress
return newkvs; // Use the new table already
// No copy in-progress, so start one. First up: compute new table size.
int oldlen = len(kvs); // Old count of K,V pairs allowed
int sz = size(); // Get current table count of active K,V pairs
int newsz = sz; // First size estimate
// Heuristic to determine new size. We expect plenty of dead-slots-with-keys
// and we need some decent padding to avoid endless reprobing.
if( sz >= (oldlen>>2) ) { // If we are >25% full of keys then...
newsz = oldlen<<1; // Double size
if( sz >= (oldlen>>1) ) // If we are >50% full of keys then...
newsz = oldlen<<2; // Double double size
}
// This heuristic in the next 2 lines leads to a much denser table
// with a higher reprobe rate
//if( sz >= (oldlen>>1) ) // If we are >50% full of keys then...
// newsz = oldlen<<1; // Double size
// Last (re)size operation was very recent? Then double again; slows
// down resize operations for tables subject to a high key churn rate.
long tm = System.currentTimeMillis();
long q=0;
if( newsz <= oldlen && // New table would shrink or hold steady?
tm <= topmap._last_resize_milli+10000 && // Recent resize (less than 1 sec ago)
(q=_slots.estimate_get()) >= (sz<<1) ) // 1/2 of keys are dead?
newsz = oldlen<<1; // Double the existing size
// Do not shrink, ever
if( newsz < oldlen ) newsz = oldlen;
// Convert to power-of-2
int log2;
for( log2=MIN_SIZE_LOG; (1<<log2) < newsz; log2++ ) ; // Compute log2 of size
// Now limit the number of threads actually allocating memory to a
// handful - lest we have 750 threads all trying to allocate a giant
// resized array.
long r = _resizers;
while( !_resizerUpdater.compareAndSet(this,r,r+1) )
r = _resizers;
// Size calculation: 2 words (K+V) per table entry, plus a handful. We
// guess at 32-bit pointers; 64-bit pointers screws up the size calc by
// 2x but does not screw up the heuristic very much.
int megs = ((((1<<log2)<<1)+4)<<3/*word to bytes*/)>>20/*megs*/;
if( r >= 2 && megs > 0 ) { // Already 2 guys trying; wait and see
newkvs = _newkvs; // Between dorking around, another thread did it
if( newkvs != null ) // See if resize is already in progress
return newkvs; // Use the new table already
// TODO - use a wait with timeout, so we'll wakeup as soon as the new table
// is ready, or after the timeout in any case.
//synchronized( this ) { wait(8*megs); } // Timeout - we always wakeup
// For now, sleep a tad and see if the 2 guys already trying to make
// the table actually get around to making it happen.
try { Thread.sleep(8*megs); } catch( Exception e ) { }
}
// Last check, since the 'new' below is expensive and there is a chance
// that another thread slipped in a new thread while we ran the heuristic.
newkvs = _newkvs;
if( newkvs != null ) // See if resize is already in progress
return newkvs; // Use the new table already
// Double size for K,V pairs, add 1 for CHM
newkvs = new Object[((1<<log2)<<1)+2]; // This can get expensive for big arrays
newkvs[0] = new CHM(_size); // CHM in slot 0
newkvs[1] = new int[1<<log2]; // hashes in slot 1
// Another check after the slow allocation
if( _newkvs != null ) // See if resize is already in progress
return _newkvs; // Use the new table already
// The new table must be CAS'd in so only 1 winner amongst duplicate
// racing resizing threads. Extra CHM's will be GC'd.
if( CAS_newkvs( newkvs ) ) { // NOW a resize-is-in-progress!
//notifyAll(); // Wake up any sleepers
//long nano = System.nanoTime();
//System.out.println(" "+nano+" Resize from "+oldlen+" to "+(1<<log2)+" and had "+(_resizers-1)+" extras" );
//if( System.out != null ) System.out.print("["+log2);
topmap.rehash(); // Call for Hashtable's benefit
} else // CAS failed?
newkvs = _newkvs; // Reread new table
return newkvs;
}
16-20行,计算新扩容长度,如果当前元素对数达到1/4,则扩容为原来两倍,如果达到1/2,扩容为4倍。
28-36行,如果新扩容长度小等于原来的长度,并且最近调整时间小于等于1s,并且_slots的estimate_get长度小于原来数据长度的一半进行缩减map(关于_slots后续会详细讲,这个类还进行统计size的计算),根据(if( newsz < oldlen ) newsz = oldlen)来看,至少维持当前的容量。
39-62行,计算megs。计算当前参与resize的线程个数,假如多于2个则多sleep一会儿8*megs,然后取得_newkvs。
余下的代码,构造newkvs ,并且尝试CAS将它替代,然后返回构造完成的_newkvs。
注:resize方法仅仅计算扩容大小,不做额外的操作。
来看help_copy方法,因为help_copy最终调用的是help_copy_impl,直接看help_copy_impl方法:
private final void help_copy_impl( NonBlockingHashMap topmap, Object[] oldkvs, boolean copy_all ) {
assert chm(oldkvs) == this;
Object[] newkvs = _newkvs;
assert newkvs != null; // Already checked by caller
int oldlen = len(oldkvs); // Total amount to copy
final int MIN_COPY_WORK = Math.min(oldlen,1024); // Limit per-thread work
// ---
int panic_start = -1;
int copyidx=-9999; // Fool javac to think it's initialized
while( _copyDone < oldlen ) { // Still needing to copy?
// Carve out a chunk of work. The counter wraps around so every
// thread eventually tries to copy every slot repeatedly.
// We "panic" if we have tried TWICE to copy every slot - and it still
// has not happened. i.e., twice some thread somewhere claimed they
// would copy 'slot X' (by bumping _copyIdx) but they never claimed to
// have finished (by bumping _copyDone). Our choices become limited:
// we can wait for the work-claimers to finish (and become a blocking
// algorithm) or do the copy work ourselves. Tiny tables with huge
// thread counts trying to copy the table often 'panic'.
if( panic_start == -1 ) { // No panic?
copyidx = (int)_copyIdx;
while( copyidx < (oldlen<<1) && // 'panic' check
!_copyIdxUpdater.compareAndSet(this,copyidx,copyidx+MIN_COPY_WORK) )
copyidx = (int)_copyIdx; // Re-read
if( !(copyidx < (oldlen<<1)) ) // Panic!
panic_start = copyidx; // Record where we started to panic-copy
}
// We now know what to copy. Try to copy.
int workdone = 0;
for( int i=0; i<MIN_COPY_WORK; i++ )
if( copy_slot(topmap,(copyidx+i)&(oldlen-1),oldkvs,newkvs) ) // Made an oldtable slot go dead?
workdone++; // Yes!
if( workdone > 0 ) // Report work-done occasionally
copy_check_and_promote( topmap, oldkvs, workdone );// See if we can promote
//for( int i=0; i<MIN_COPY_WORK; i++ )
// if( copy_slot(topmap,(copyidx+i)&(oldlen-1),oldkvs,newkvs) ) // Made an oldtable slot go dead?
// copy_check_and_promote( topmap, oldkvs, 1 );// See if we can promote
copyidx += MIN_COPY_WORK;
// Uncomment these next 2 lines to turn on incremental table-copy.
// Otherwise this thread continues to copy until it is all done.
if( !copy_all && panic_start == -1 ) // No panic?
return; // Then done copying after doing MIN_COPY_WORK
}
// Extra promotion check, in case another thread finished all copying
// then got stalled before promoting.
copy_check_and_promote( topmap, oldkvs, 0 );// See if we can promote
}
6行:取出原有数据长度和1024较小的一个,作为一次性复制的一段数据个数。
9-31行:copyidx用于复制数据开始的下标,假如copyidx超过oldlen*2,则说明当前所有数据都正在被复制。panic_start用于确保数据复制完成,看了下代码参数意义不大,因为每个线程都会执行数据复制是否完成的逻辑。
其余代码是for循环完成复制数据和校验是否复制完成的两个方法,即copy_slot和copy_check_and_promote方法,分析这两个源码方法之前,先看另外一个入口copy_slot_and_check,这个方法是get和putIfMatch调用的:
private final Object[] copy_slot_and_check( NonBlockingHashMap topmap, Object[] oldkvs, int idx, Object should_help ) {
assert chm(oldkvs) == this;
Object[] newkvs = _newkvs; // VOLATILE READ
// We're only here because the caller saw a Prime, which implies a
// table-copy is in progress.
assert newkvs != null;
if( copy_slot(topmap,idx,oldkvs,_newkvs) ) // Copy the desired slot
copy_check_and_promote(topmap, oldkvs, 1); // Record the slot copied
// Generically help along any copy (except if called recursively from a helper)
return (should_help == null) ? newkvs : topmap.help_copy(newkvs);
}
这段逻辑比较清晰调用数据复制copy_slot和确保是否复制完成copy_check_and_promote,第三行同样是VOLATILE保证数据可见性。
下面分析下copy_slot方法,去除了多余的注释:
private boolean copy_slot( NonBlockingHashMap topmap, int idx, Object[] oldkvs, Object[] newkvs ) {
Object key;
while( (key=key(oldkvs,idx)) == null )
CAS_key(oldkvs,idx, null, TOMBSTONE);
Object oldval = val(oldkvs,idx); // Read OLD table
while( !(oldval instanceof Prime) ) {
final Prime box = (oldval == null || oldval == TOMBSTONE) ? TOMBPRIME : new Prime(oldval);
if( CAS_val(oldkvs,idx,oldval,box) ) { //
if( box == TOMBPRIME )
return true;
oldval = box; // Record updated oldval
break; // Break loop; oldval is now boxed by us
}
oldval = val(oldkvs,idx); // Else try, try again
}
if( oldval == TOMBPRIME ) return false; // Copy already complete here!
Object old_unboxed = ((Prime)oldval)._V;
assert old_unboxed != TOMBSTONE;
boolean copied_into_new = (putIfMatch(topmap, newkvs, key, old_unboxed, null) == null);
while( !CAS_val(oldkvs,idx,oldval,TOMBPRIME) )
oldval = val(oldkvs,idx);
return copied_into_new;
} // end copy_slot
} // End of CHM
3-4行,如果key为null,则替换为TOMBSTONE。这样做的目的是因为在put数据时,并不是直接判断是否正在扩容,而是直接新增数据,此时给一个标识该位置已经扩容过,新增数据时,会跳过这个位置。
这里多说下,remove数据时,remove会将value的值变成TOMBSTONE,并不是直接删除,是为了get正确的数据,因为get退出条件是K==null,所以NonBlockingHashMap最差时间复杂度需要遍历整个数组,而ConcurrentHashMap利用数组+链表或者红黑树代替,减少了检索时间。
5-16行,判断oldval是否需要更新成TOMBSTONE类型还是Prime类型。
17-22行,调用putIfMatch将oldval复制到新的newkvs。
copy_check_and_promote方法就暂不看了,主要是将_copyDone数据更新并检查是否完成复制将旧oldkvs替换成新的_newkvs。
remove get源码便不写了,下面主要写下size计算,计算size的类是在ConcurrentAutoTable类,主要方法是add_if_mask:
public long add_if_mask( long x, long mask, int hash, ConcurrentAutoTable master ) {
long[] t = _t;
int idx = hash & (t.length-1);
// Peel loop; try once fast
long old = t[idx];
boolean ok = CAS( t, idx, old&~mask, old+x );
if( _sum_cache != Long.MIN_VALUE )
_sum_cache = Long.MIN_VALUE; // Blow out cache
if( ok ) return old; // Got it
if( (old&mask) != 0 ) return old; // Failed for bit-set under mask
// Try harder
int cnt=0;
while( true ) {
old = t[idx];
if( (old&mask) != 0 ) return old; // Failed for bit-set under mask
if( CAS( t, idx, old, old+x ) ) break; // Got it!
cnt++;
}
if( cnt < MAX_SPIN ) return old; // Allowable spin loop count
if( t.length >= 1024*1024 ) return old; // too big already
// Too much contention; double array size in an effort to reduce contention
long r = _resizers;
int newbytes = (t.length<<1)<<3/*word to bytes*/;
while( !_resizerUpdater.compareAndSet(this,r,r+newbytes) )
r = _resizers;
r += newbytes;
if( master._cat != this ) return old; // Already doubled, don't bother
if( (r>>17) != 0 ) { // Already too much allocation attempts?
// TODO - use a wait with timeout, so we'll wakeup as soon as the new
// table is ready, or after the timeout in any case. Annoyingly, this
// breaks the non-blocking property - so for now we just briefly sleep.
//synchronized( this ) { wait(8*megs); } // Timeout - we always wakeup
try { Thread.sleep(r>>17); } catch( InterruptedException e ) { }
if( master._cat != this ) return old;
}
CAT newcat = new CAT(this,t.length*2,0);
// Take 1 stab at updating the CAT with the new larger size. If this
// fails, we assume some other thread already expanded the CAT - so we
// do not need to retry until it succeeds.
master.CAS_cat(this,newcat);
return old;
}
_t是统计size的数组,获取size时就是遍历整个_t数组。
2-8行,根据idx获取_t索引下的值,利用cas更新结果,若更新成功,则结束,否则代表多个线程竞争。
11-19行,死循环根据idx获取_t索引下的值,利用cas更新结果,直到更新成功或者(old&mask) != 0直接return结束。18,19行代表竞争小于2或者大等于1024*1024直接结束。
22-35行,已经有太多分配尝试,则休眠一段时间。
最后几行代码代表将数据扩容2倍的长度。
至此,分析源码也算结束了,NonBlockingHashMap和jdk1.8ConcurrentHashMap有一些相似点,扩容时利用多线程加速复制数据,利用数组统计size减少线程竞争。至于两者性能对比我只找到了最近时间一篇文章链接为:https://fmt.ewi.utwente.nl/media/211.pdf 里面提到说ConcurrentHashMa在性能和伸缩性上的表现都是好于NonBlockingHashMap的。具体的需要自己做些benchmark。