数据分析学习Day10---业务(用户生命周期)

定义


客户生命周期是指从一个客户开始对企业进行了解或企业欲对某一客户进行开发开始,直到客户与企业的业务关系完全终止且与之相关的事宜完全处理完毕的这段时间。

很多文章都会通俗的解释说,运营就是让用户留下来,没错,但是它漏了后半句话。

让用户留下来,并且赚钱。

用户生命周期价值CLV(Customer Lifetime Value,也有称LTV:Life Time Value)比生命周期更重要。让用户能在生命周期中产生商业价值,才是运营的使命。

这里引出运营的终极公式之一:

赚钱=CLV(用户生命周期价值)-CAC(获客成本)-COC(运营成本)

(整个公式是运营体系的框架之一,另外两个指标以后会写)

用户生命周期则比CLV更容易计算和运营。

我们通常说的留存率,就是用户生命周期的杀手锏应用。通过留存率,我们分析出用户的黏性、活跃度等指标。但留存率很难和商业挂钩,不具备商业的可解释性。我们就会换算成生命周期。

用户生命周期=周期/(1-周期内新增留存率)

如果一款产品新增用户的月留存率是70%,那么估算出:平均用户生命周期=1个月/(1-70%)=3.3个月。

运营的目标就是延长用户生命周期从3.3个月到4个月、5个月乃至更长。并且在此期间产生商业价值。对于大部分产品,这个公式都是适用的。

如果需要更精准的指标,则可以将数据制作成频数分布图。

来看看怎么精准的分析和运营:

用户生命周期最少的那部分用户,例如10天,有什么具体特征,为什么不用?

用户生命周期最多的那部分用户,有什么特点?

分布人数最多的用户,怎么样能想办法抓住他们的痛点?延长他们生命周期

究竟是用的久的用户(二八理论),还是分布人数最多的用户(长尾理论),产生的商业价值大?

每个用户的生命周期都能产生商业价值,但有些用户注定更有价值。

用户生命周期和流失是息息相关的,用户流失,便是用户生命周期的终止。

将用户的流失可能扼杀在萌芽阶段,是延长用户生命周期的有效手段之一。这听起来很玄乎,但举个例子就会明白的。

一款社交应用,通过流失用户的特征分析。发现了如下的几个特点。

流失用户中,40%的用户没有完善资料

新增用户没有导入通讯录好友,流失概率比导入的高20%

新增用户在第一周使用中,如果添加的好友低于3,则一个月后的流失概率超过一半

用户流失前一个月,互动率远低于APP平均值。

这些特征很容易读懂了解,运营也很容易针对性的采取策略。例如良好的新手引导、引入好友推荐(想想微博和各兴趣向APP)、增加曝光量、乃至使用机器人(这里有几个好玩案例,以后分享^ ^)等等。

如果数据化运营更彻底,可以运营和数据分析结合,将上述的特征建模,得出一个比较准确的流失概率预测。用模型计算出某一类人群流失概率在80%以上,和知道什么样的人可能流失,在运营上是两个层次。

我们可以构建决策树模型,因为决策树模型的可解释性强,它是if-then的集合,运营非常容易理解。比如用户完善资料低于50%,且没有导入通讯录好友,且好友数量低于3,则其一个月后的流失概率为80%。模型训练出叶节点,运营用SQL就能跑出来可能流失的用户群。

另外,发掘出变化性变量在运营中有奇效。比如完善资料,是否导入通讯录好友,都是静态、状态型的特征,更多是产品上的优化。但是某一类用户流失,能通过其他数据特征体现,比如上周打开了APP20次,本周打开了5次,下周打开了1次,趋势是下降的,这绝逼是累感不爱了啊!(趋势上升是另外一种运营策略了)这时我们运营就可以采取温暖的爱的抱抱,运营这类用户。

Tips:

用户生命周期运营实际会更复杂,比如真正产生商业价值的群体应该去运营和分析,需不需要引入CRM(客户关系管理),RFM(衡量客户价值和客户创利能力的重要工具和手段。)等等,比如常见的积分体系能不能提高CL。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容