题目来源
给一堆矩形左下和右上坐标,问这些能否恰好拼成一个大矩形。
我只想到最naive的方法,先算出左下角和右上角的坐标,然后构建一个大vector,然后再遍历一遍,所有被覆盖的都改为1。然后判断,代码如下:
class Solution {
public:
bool isRectangleCover(vector<vector<int>>& rectangles) {
pair<int, int> bottomLeft = make_pair(INT_MAX, INT_MAX), TopRight = make_pair(0, 0);
int n = rectangles.size();
int area = 0;
for (int i=0; i<n; i++) {
if (rectangles[i][0] <= bottomLeft.first && rectangles[i][1] <= bottomLeft.second)
bottomLeft = make_pair(rectangles[i][0], rectangles[i][1]);
if (rectangles[i][2] >= TopRight.first && rectangles[i][3] >= TopRight.second)
TopRight = make_pair(rectangles[i][2], rectangles[i][3]);
area += (rectangles[i][2] - rectangles[i][0]) * (rectangles[i][3] - rectangles[i][1]);
}
for (int i=0; i<n; i++) {
if (rectangles[i][0] < bottomLeft.first || rectangles[i][1] < bottomLeft.second
|| rectangles[i][2] > TopRight.first || rectangles[i][3] > TopRight.second)
return false;
}
int deltaX = (TopRight.first - bottomLeft.first), deltaY = (TopRight.second - bottomLeft.second);
if (deltaX * deltaY != area)
return false;
vector<vector<int>> isContained(deltaX, vector<int>(deltaY, 0));
for (int i=0; i<n; i++) {
for (int x=rectangles[i][0]; x<rectangles[i][2]; x++)
for (int y=rectangles[i][1]; y<rectangles[i][3]; y++) {
if (isContained[x-bottomLeft.first][y-bottomLeft.second])
return false;
isContained[x-bottomLeft.first][y-bottomLeft.second]++;
}
}
return true;
}
};
然后又不出意料的超时了,而且内存也爆炸了。怎么改进呢?
看了半天卧槽,效率真的是低的令人发指。
满足题目要求需要满足几个条件:
- 大矩形面积等于小矩形面积和;
- 除了最边上四个点唯一,其余点都重复2次或4次。
class Solution {
public:
bool isRectangleCover(vector<vector<int>>& rectangles) {
int x1 = INT_MAX, y1 = INT_MAX, x2 = INT_MIN, y2 = INT_MIN;
int n = rectangles.size();
int area = 0;
set<pair<int, int>> sets;
for (int i=0; i<n; i++) {
if (!sets.insert(make_pair(rectangles[i][0], rectangles[i][1])).second)
sets.erase(make_pair(rectangles[i][0], rectangles[i][1]));
if (!sets.insert(make_pair(rectangles[i][2], rectangles[i][3])).second)
sets.erase(make_pair(rectangles[i][2], rectangles[i][3]));
if (!sets.insert(make_pair(rectangles[i][0], rectangles[i][3])).second)
sets.erase(make_pair(rectangles[i][0], rectangles[i][3]));
if (!sets.insert(make_pair(rectangles[i][2], rectangles[i][1])).second)
sets.erase(make_pair(rectangles[i][2], rectangles[i][1]));
if (rectangles[i][0] <= x1 && rectangles[i][1] <= y1) {
x1 = rectangles[i][0];
y1 = rectangles[i][1];
}
if (rectangles[i][2] >= x2 && rectangles[i][3] >= y2) {
x2 = rectangles[i][2];
y2 = rectangles[i][3];
}
area += (rectangles[i][2] - rectangles[i][0]) * (rectangles[i][3] - rectangles[i][1]);
}
for (int i=0; i<n; i++) {
if (rectangles[i][0] < x1 || rectangles[i][1] < y1
|| rectangles[i][2] > x2 || rectangles[i][3] > y2)
return false;
}
if (sets.count(make_pair(x1, y1)) != 1 || sets.count(make_pair(x1, y2)) != 1
|| sets.count(make_pair(x2, y1)) != 1 || sets.count(make_pair(x2, y2)) != 1 || sets.size() != 4)
return false;
return (x2 - x1) * (y2 - y1) == area;
}
};