原理剖析(第 012 篇)Netty之无锁队列MpscUnboundedArrayQueue原理分析
一、大致介绍
1、了解过netty原理的童鞋,其实应该知道工作线程组的每个子线程都维护了一个任务队列;
2、细心的童鞋会发现netty的队列是重写了队列的实现方法,覆盖了父类中的LinkedBlockingQueue队列,但是如今却换成了JCTools的一些并发队列,因为JCTools是一款对jdk并发数据结构进行增强的并发工具;
3、那么问题就来了,现在的netty要用新的队列呢?难道是新的队列确实很高效么?
4、那么本章节就来和大家分享分析一下Netty新采用的队列之一MpscUnboundedArrayQueue,分析Netty的源码版本为:netty-netty-4.1.22.Final;
二、回顾预习
2.1 构造队列
1、源码:
// NioEventLoop.java
@Override
protected Queue<Runnable> newTaskQueue(int maxPendingTasks) {
// This event loop never calls takeTask()
// 由于默认是没有配置io.netty.eventLoop.maxPendingTasks属性值的,所以maxPendingTasks默认值为Integer.MAX_VALUE;
// 那么最后配备的任务队列的大小也就自然使用无参构造队列方法
return maxPendingTasks == Integer.MAX_VALUE ? PlatformDependent.<Runnable>newMpscQueue()
: PlatformDependent.<Runnable>newMpscQueue(maxPendingTasks);
}
// PlatformDependent.java
/**
* Create a new {@link Queue} which is safe to use for multiple producers (different threads) and a single
* consumer (one thread!).
* @return A MPSC queue which may be unbounded.
*/
public static <T> Queue<T> newMpscQueue() {
return Mpsc.newMpscQueue();
}
// Mpsc.java
static <T> Queue<T> newMpscQueue() {
return USE_MPSC_CHUNKED_ARRAY_QUEUE ? new MpscUnboundedArrayQueue<T>(MPSC_CHUNK_SIZE)
: new MpscUnboundedAtomicArrayQueue<T>(MPSC_CHUNK_SIZE);
}
2、通过源码回顾,想必大家已经隐约回忆起之前分析过这段代码,我们在构建工作线程管理组的时候,还需要实例化子线程数组children[],所以自然就会碰到这段代码;
3、这段代码其实就是为了实现一个无锁方式的线程安全队列,总之一句话,效率相当相当的高;
2.2 何为JCTools?
1、JCTools是服务虚拟机并发开发的工具,提供一些JDK没有的并发数据结构辅助开发。
2、是一个聚合四种 SPSC/MPSC/SPMC/MPMC 数据变量的并发队列:
• SPSC:单个生产者对单个消费者(无等待、有界和无界都有实现)
• MPSC:多个生产者对单个消费者(无锁、有界和无界都有实现)
• SPMC:单生产者对多个消费者(无锁 有界)
• MPMC:多生产者对多个消费者(无锁、有界)
3、SPSC/MPSC 提供了一个在性能,分配和分配规则之间的平衡的关联数组队列;
2.3 常用重要的成员属性及方法
1、private volatile long producerLimit;
// 数据链表所分配或者扩展后的容量值
2、protected long producerIndex;
// 生产者指针,每添加一个数据,指针加2
3、protected long consumerIndex;
// 消费者指针,每移除一个数据,指针加2
4、private static final int RETRY = 1; // 重新尝试,有可能是因为并发原因,CAS操作指针失败,所以需要重新尝试添加动作
private static final int QUEUE_FULL = 2; // 队列已满,直接返回false操作
private static final int QUEUE_RESIZE = 3; // 需要扩容处理,扩容的后的容量值producerLimit一般都是mask的N倍
// 添加数据时,根据offerSlowPath返回的状态值来做各种处理
5、protected E[] producerBuffer;
// 数据缓冲区,需要添加的数据放在此
6、protected long producerMask;
// 生产者扩充容量值,一般producerMask与consumerMask是一致的,而且需要扩容的数值一般和此值一样
7、public boolean offer(final E e)
// 添加元素
8、public E poll()
// 移除元素
2.4 数据结构
1、如果chunkSize初始化大小为4,则最后显示的数据结构如下:
E1,E2,。。。,EN:表示具体的元素;
NBP:表示下一个缓冲区的指针,我采用的是英文的缩写( Next Buffer Pointer);
而且你看着我是拆分开写的,其实每一个NBP指向的就是下面一组缓冲区;
Buffer1中的NBP其实就是Buffer2的指针引用;
Buffer2中的NBP其实就是Buffer3的指针引用;
以此类推。。。
+------+------+------+------+------+
| | | | | |
| E1 | E2 | E3 | JUMP | NBP | Buffer1
| | | | | |
+------+------+------+------+------+
+------+------+------+------+------+
| | | | | |
| E5 | E6 | JUMP | E4 | NBP | Buffer2
| | | | | |
+------+------+------+------+------+
+------+------+------+------+------+
| | | | | |
| E9 | JUMP | E7 | E8 | NBP | Buffer3
| | | | | |
+------+------+------+------+------+
+------+------+------+------+------+
| | | | | |
| JUMP | E10 | E11 | E12 | NBP | Buffer4
| | | | | |
+------+------+------+------+------+
+------+------+------+------+------+
| | | | | |
| E13 | E14 | E15 | JUMP | NBP | Buffer5
| | | | | |
+------+------+------+------+------+
2、这个数据结构和我们通常所认知的链表是不是有点异样,其实大体还是雷同的,这种数据结构其实也是指针的单项指引罢了;
三、源码分析MpscUnboundedArrayQueue
3.1、MpscUnboundedArrayQueue(int)
1、源码:
// MpscUnboundedArrayQueue.java
public MpscUnboundedArrayQueue(int chunkSize)
{
super(chunkSize); // 调用父类的含参构造方法
}
// BaseMpscLinkedArrayQueue.java
/**
* @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the chunk size.
* Must be 2 or more.
*/
public BaseMpscLinkedArrayQueue(final int initialCapacity)
{
// 校验队列容量值,大小必须不小于2
RangeUtil.checkGreaterThanOrEqual(initialCapacity, 2, "initialCapacity");
// 通过传入的参数通过Pow2算法获取大于initialCapacity最近的一个2的n次方的值
int p2capacity = Pow2.roundToPowerOfTwo(initialCapacity);
// leave lower bit of mask clear
long mask = (p2capacity - 1) << 1; // 通过p2capacity计算获得mask值,该值后续将用作扩容的值
// need extra element to point at next array
E[] buffer = allocate(p2capacity + 1); // 默认分配一个 p2capacity + 1 大小的数据缓冲区
producerBuffer = buffer;
producerMask = mask;
consumerBuffer = buffer;
consumerMask = mask;
// 同时用mask作为初始化队列的Limit值,当生产者指针producerIndex超过该Limit值时就需要做扩容处理
soProducerLimit(mask); // we know it's all empty to start with
}
// RangeUtil.java
public static int checkGreaterThanOrEqual(int n, int expected, String name)
{
// 要求队列的容量值必须不小于 expected 值,这个 expected 值由上层决定,但是对 MpscUnboundedArrayQueue 而言,expected 为 2;
// 那么就是说 MpscUnboundedArrayQueue 的值必须不小于 2;
if (n < expected)
{
throw new IllegalArgumentException(name + ": " + n + " (expected: >= " + expected + ')');
}
return n;
}
2、通过调用父类的构造方法,分配了一个数据缓冲区,初始化容量大小,并且容量值不小于2,差不多就这样队列的实例化操作已经完成了;
3.2、offer(E)
1、源码:
// BaseMpscLinkedArrayQueue.java
@Override
public boolean offer(final E e)
{
if (null == e) // 待添加的元素e不允许为空,否则抛空指针异常
{
throw new NullPointerException();
}
long mask;
E[] buffer;
long pIndex;
while (true)
{
long producerLimit = lvProducerLimit(); // 获取当前数据Limit的阈值
pIndex = lvProducerIndex(); // 获取当前生产者指针位置
// lower bit is indicative of resize, if we see it we spin until it's cleared
if ((pIndex & 1) == 1)
{
continue;
}
// pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1)
// mask/buffer may get changed by resizing -> only use for array access after successful CAS.
mask = this.producerMask;
buffer = this.producerBuffer;
// a successful CAS ties the ordering, lv(pIndex) - [mask/buffer] -> cas(pIndex)
// assumption behind this optimization is that queue is almost always empty or near empty
if (producerLimit <= pIndex) // 当阈值小于等于生产者指针位置时,则需要扩容,否则直接通过CAS操作对pIndex做加2处理
{
// 通过offerSlowPath返回状态值,来查看怎么来处理这个待添加的元素
int result = offerSlowPath(mask, pIndex, producerLimit);
switch (result)
{
case CONTINUE_TO_P_INDEX_CAS:
break;
case RETRY: // 可能由于并发原因导致CAS失败,那么则再次重新尝试添加元素
continue;
case QUEUE_FULL: // 队列已满,直接返回false操作
return false;
case QUEUE_RESIZE: // 队列需要扩容操作
resize(mask, buffer, pIndex, e); // 对队列进行直接扩容操作
return true;
}
}
// 能走到这里,则说明当前的生产者指针位置还没有超过阈值,因此直接通过CAS操作做加2处理
if (casProducerIndex(pIndex, pIndex + 2))
{
break;
}
}
// INDEX visible before ELEMENT
// 获取计算需要添加元素的位置
final long offset = modifiedCalcElementOffset(pIndex, mask);
// 在buffer的offset位置添加e元素
soElement(buffer, offset, e); // release element e
return true;
}
// BaseMpscLinkedArrayQueueProducerFields.java
@Override
public final long lvProducerIndex()
{
// 通过Unsafe对象调用native方法,获取生产者指针位置
return UNSAFE.getLongVolatile(this, P_INDEX_OFFSET);
}
// UnsafeRefArrayAccess.java
/**
* An ordered store(store + StoreStore barrier) of an element to a given offset
*
* @param buffer this.buffer
* @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset}
* @param e an orderly kitty
*/
public static <E> void soElement(E[] buffer, long offset, E e)
{
// 通过Unsafe对象调用native方法,将元素e设置到buffer缓冲区的offset位置
UNSAFE.putOrderedObject(buffer, offset, e);
}
2、此方法为添加新的元素对象,当pIndex指针超过阈值producerLimit时则扩容处理,否则直接通过CAS操作添加记录pIndex位置;
3.3、offerSlowPath(long, long, long)
1、源码:
// BaseMpscLinkedArrayQueue.java
/**
* We do not inline resize into this method because we do not resize on fill.
*/
private int offerSlowPath(long mask, long pIndex, long producerLimit)
{
// 获取消费者指针
final long cIndex = lvConsumerIndex();
// 获取当前缓冲区的容量值,getCurrentBufferCapacity方法由子类MpscUnboundedArrayQueue实现,默认返回mask值
long bufferCapacity = getCurrentBufferCapacity(mask);
// 如果消费指针加上容量值如果超过了生产指针,那么则会尝试进行扩容处理
if (cIndex + bufferCapacity > pIndex)
{
if (!casProducerLimit(producerLimit, cIndex + bufferCapacity))
{
// retry from top
return RETRY;
}
else
{
// continue to pIndex CAS
return CONTINUE_TO_P_INDEX_CAS;
}
}
// full and cannot grow 子类MpscUnboundedArrayQueue默认返回Integer.MAX_VALUE值,所以不会进入此分支
else if (availableInQueue(pIndex, cIndex) <= 0)
{
// offer should return false;
return QUEUE_FULL;
}
// grab index for resize -> set lower bit 尝试扩容队列
else if (casProducerIndex(pIndex, pIndex + 1))
{
// trigger a resize
return QUEUE_RESIZE;
}
else
{
// failed resize attempt, retry from top
return RETRY;
}
}
// MpscUnboundedArrayQueue.java
@Override
protected long getCurrentBufferCapacity(long mask)
{
// 获取当前缓冲区的容量值
return mask;
}
// BaseMpscLinkedArrayQueue.java
final boolean casProducerLimit(long expect, long newValue)
{
// 通过CAS尝试对阈值进行修改扩容处理
return UNSAFE.compareAndSwapLong(this, P_LIMIT_OFFSET, expect, newValue);
}
// MpscUnboundedArrayQueue.java
@Override
protected long availableInQueue(long pIndex, long cIndex)
{
// 获取可用容量值
return Integer.MAX_VALUE;
}
// BaseMpscLinkedArrayQueueProducerFields.java
final boolean casProducerIndex(long expect, long newValue)
{
// 通过CAS操作更新生产者指针
return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue);
}
2、该方法主要通过一系列的if...else判断,并结合子类MpscUnboundedArrayQueue的一些重写方法来判断针对该新添加的元素要做何种状态处理;
3.4、resize(long, E[], long, E)
1、源码:
// BaseMpscLinkedArrayQueue.java
private void resize(long oldMask, E[] oldBuffer, long pIndex, E e)
{
// 获取oldBuffer的长度值
int newBufferLength = getNextBufferSize(oldBuffer);
// 重新创建新的缓冲区
final E[] newBuffer = allocate(newBufferLength);
producerBuffer = newBuffer; // 将新创建的缓冲区赋值到生产者缓冲区对象上
final int newMask = (newBufferLength - 2) << 1;
producerMask = newMask;
// 根据oldMask获取偏移位置值
final long offsetInOld = modifiedCalcElementOffset(pIndex, oldMask);
// 根据newMask获取偏移位置值
final long offsetInNew = modifiedCalcElementOffset(pIndex, newMask);
// 将元素e设置到新的缓冲区newBuffer的offsetInNew位置处
soElement(newBuffer, offsetInNew, e);// element in new array
// 通过nextArrayOffset(oldMask)计算新的缓冲区将要放置旧的缓冲区的哪个位置
// 将新的缓冲区newBuffer设置到旧的缓冲区oldBuffer的nextArrayOffset(oldMask)位置处
// 主要是将oldBuffer中最后一个元素的位置指向新的缓冲区newBuffer
// 这样就构成了一个单向链表指向的关系
soElement(oldBuffer, nextArrayOffset(oldMask), newBuffer);// buffer linked
// ASSERT code
final long cIndex = lvConsumerIndex();
final long availableInQueue = availableInQueue(pIndex, cIndex);
RangeUtil.checkPositive(availableInQueue, "availableInQueue");
// Invalidate racing CASs
// We never set the limit beyond the bounds of a buffer
// 重新扩容阈值,因为availableInQueue反正都是Integer.MAX_VALUE值,所以自然就取mask值啦
// 因此针对MpscUnboundedArrayQueue来说,扩容的值其实就是mask的值的大小
soProducerLimit(pIndex + Math.min(newMask, availableInQueue));
// make resize visible to the other producers
// 设置生产者指针加2处理
soProducerIndex(pIndex + 2);
// INDEX visible before ELEMENT, consistent with consumer expectation
// make resize visible to consumer
// 用一个空对象来衔接新老缓冲区,凡是在缓冲区中碰到JUMP对象的话,那么就得琢磨着准备着获取下一个缓冲区的数据元素了
soElement(oldBuffer, offsetInOld, JUMP);
}
// MpscUnboundedArrayQueue.java
@Override
protected int getNextBufferSize(E[] buffer)
{
// 获取buffer缓冲区的长度
return length(buffer);
}
// LinkedArrayQueueUtil.java
static int length(Object[] buf)
{
// 直接通过length属性来获取数组的长度
return buf.length;
}
// CircularArrayOffsetCalculator.java
@SuppressWarnings("unchecked")
public static <E> E[] allocate(int capacity)
{
// 根据容量值创建数组
return (E[]) new Object[capacity];
}
2、该方法主要完成新的元素的放置,同时也完成了扩容操作,采用单向链表指针关系,将原缓冲区和新创建的缓冲区衔接起来;
3.5、poll()
1、源码:
// BaseMpscLinkedArrayQueue.java
/**
* {@inheritDoc}
* <p>
* This implementation is correct for single consumer thread use only.
*/
@SuppressWarnings("unchecked")
@Override
public E poll()
{
final E[] buffer = consumerBuffer; // 获取缓冲区的数据
final long index = consumerIndex;
final long mask = consumerMask;
// 根据消费指针与mask来获取当前需要从哪个位置开始来移除元素
final long offset = modifiedCalcElementOffset(index, mask);
// 从buffer缓冲区的offset位置获取元素内容
Object e = lvElement(buffer, offset);// LoadLoad
if (e == null) // 如果元素为null的话
{
// 则再探讨看看消费指针是不是和生产指针是不是相同
if (index != lvProducerIndex())
{
// poll() == null iff queue is empty, null element is not strong enough indicator, so we must
// check the producer index. If the queue is indeed not empty we spin until element is
// visible.
// 若不相同的话,则先尝试从buffer缓冲区的offset位置获取元素先,若获取元素为null则结束while处理
do
{
e = lvElement(buffer, offset);
}
while (e == null);
}
// 说明消费指针是不是和生产指针是相等的,那么则缓冲区的数据已经被消费完了,直接返回null即可
else
{
return null;
}
}
// 如果元素为JUMP空对象的话,那么意味着我们就得获取下一缓冲区进行读取数据了
if (e == JUMP)
{
//
final E[] nextBuffer = getNextBuffer(buffer, mask);
//
return newBufferPoll(nextBuffer, index);
}
// 能执行到这里,说明需要移除的元素既不是空的,也不是JUMP空对象,那么则就按照正常处理置空即可
// 移除元素时,则将buffer缓冲区的offset位置的元素置为空即可
soElement(buffer, offset, null); // release element null
// 同时也通过CAS操作增加消费指针的关系,加2操作
soConsumerIndex(index + 2); // release cIndex
return (E) e;
}
// BaseMpscLinkedArrayQueueProducerFields.java
@Override
public final long lvProducerIndex()
{
// 通过Unsafe对象调用native方法,获取当前生产者指针值
return UNSAFE.getLongVolatile(this, P_INDEX_OFFSET);
}
// UnsafeRefArrayAccess.java
/**
* A volatile load (load + LoadLoad barrier) of an element from a given offset.
*
* @param buffer this.buffer
* @param offset computed via {@link UnsafeRefArrayAccess#calcElementOffset(long)}
* @return the element at the offset
*/
@SuppressWarnings("unchecked")
public static <E> E lvElement(E[] buffer, long offset)
{
// 通过Unsafe对象调用native方法,获取buffer缓冲区offset位置的元素
return (E) UNSAFE.getObjectVolatile(buffer, offset);
}
// BaseMpscLinkedArrayQueue.java
@SuppressWarnings("unchecked")
private E[] getNextBuffer(final E[] buffer, final long mask)
{
// 获取下一个缓冲区的偏移位置值
final long offset = nextArrayOffset(mask);
// 从buffer缓冲区的offset位置获取下一个缓冲区数组
final E[] nextBuffer = (E[]) lvElement(buffer, offset);
// 获取出来后,同时将buffer缓冲区的offset位置置为空,代表指针已经被取出,原来位置没用了,清空即可
soElement(buffer, offset, null);
return nextBuffer;
}
// BaseMpscLinkedArrayQueue.java
private E newBufferPoll(E[] nextBuffer, long index)
{
// 从下一个新的缓冲区中找到需要移除数据的指针位置
final long offset = newBufferAndOffset(nextBuffer, index);
// 从newBuffer新的缓冲区中offset位置取出元素
final E n = lvElement(nextBuffer, offset);// LoadLoad
if (n == null) // 若取出的元素为空,则直接抛出异常
{
throw new IllegalStateException("new buffer must have at least one element");
}
// 如果取出的元素不为空,那么先将这个元素原先的位置内容先清空掉
soElement(nextBuffer, offset, null);// StoreStore
// 然后通过Unsafe对象调用native方法,修改消费指针的数值偏移加2处理
soConsumerIndex(index + 2);
return n;
}
2、该方法主要阐述了该队列是如何的移除数据的;取出的数据如果为JUMP空对象的话,那么则准备从下一个缓冲区获取数据元素,否则还是从当前的缓冲区对象中移除元素,并且更新消费指针;
3.6、size()
1、源码:
// BaseMpscLinkedArrayQueue.java
@Override
public final int size()
{
// NOTE: because indices are on even numbers we cannot use the size util.
/*
* It is possible for a thread to be interrupted or reschedule between the read of the producer and
* consumer indices, therefore protection is required to ensure size is within valid range. In the
* event of concurrent polls/offers to this method the size is OVER estimated as we read consumer
* index BEFORE the producer index.
*/
long after = lvConsumerIndex(); // 获取消费指针
long size;
while (true) // 为了防止在获取大小的时候指针发生变化,那么则死循环自旋方式获取大小数值
{
final long before = after;
final long currentProducerIndex = lvProducerIndex(); // 获取生产者指针
after = lvConsumerIndex(); // 获取消费指针
// 如果后获取的消费指针after和之前获取的消费指针before相等的话,那么说明此刻还没有指针变化
if (before == after)
{
// 那么则直接通过生产指针直接减去消费指针,然后向偏移一位,即除以2,得出最后size大小
size = ((currentProducerIndex - after) >> 1);
// 计算完了之后则直接break中断处理
break;
}
// 若消费指针前后不一致,那么可以说是由于并发原因导致了指针发生了变化;
// 那么则进行下一次循环继续获取最新的指针值再次进行判断
}
// Long overflow is impossible, so size is always positive. Integer overflow is possible for the unbounded
// indexed queues.
if (size > Integer.MAX_VALUE)
{
return Integer.MAX_VALUE;
}
else
{
return (int) size;
}
}
2、获取缓冲区数据大小其实很简单,就是拿着生产指针减去消费指针,但是为了防止并发操作计算错,才用了死循环的方式计算zise值;
3.7、isEmpty()
1、源码:
// BaseMpscLinkedArrayQueue.java
@Override
public final boolean isEmpty()
{
// Order matters!
// Loading consumer before producer allows for producer increments after consumer index is read.
// This ensures this method is conservative in it's estimate. Note that as this is an MPMC there is
// nothing we can do to make this an exact method.
// 这个就简单了,直接判断消费指针和生产指针是不是相等就知道了
return (this.lvConsumerIndex() == this.lvProducerIndex());
}
2、通过前面我们已经知道了,添加数据的话生产指针在不停的累加操作,而做移除数据的时候消费指针也在不停的累加操作;
3、那么这种指针总会有一天会碰面的吧,碰面的那个时候则是数据已经空空如也的时刻;
四、性能测试
1、测试Demo:
/**
* 比较队列的消耗情况。
*
* @author hmilyylimh
* ^_^
* @version 0.0.1
* ^_^
* @date 2018/3/30
*/
public class CompareQueueCosts {
/** 生产者数量 */
private static int COUNT_OF_PRODUCER = 2;
/** 消费者数量 */
private static final int COUNT_OF_CONSUMER = 1;
/** 准备添加的任务数量值 */
private static final int COUNT_OF_TASK = 1 << 20;
/** 线程池对象 */
private static ExecutorService executorService;
public static void main(String[] args) throws Exception {
for (int j = 1; j < 7; j++) {
COUNT_OF_PRODUCER = (int) Math.pow(2, j);
executorService = Executors.newFixedThreadPool(COUNT_OF_PRODUCER * 2);
int basePow = 8;
int capacity = 0;
for (int i = 1; i <= 3; i++) {
capacity = 1 << (basePow + i);
System.out.print("Producers: " + COUNT_OF_PRODUCER + "\t\t");
System.out.print("Consumers: " + COUNT_OF_CONSUMER + "\t\t");
System.out.print("Capacity: " + capacity + "\t\t");
System.out.print("LinkedBlockingQueue: " + testQueue(new LinkedBlockingQueue<Integer>(capacity), COUNT_OF_TASK) + "s" + "\t\t");
// System.out.print("ArrayList: " + testQueue(new ArrayList<Integer>(capacity), COUNT_OF_TASK) + "s" + "\t\t");
// System.out.print("LinkedList: " + testQueue(new LinkedList<Integer>(), COUNT_OF_TASK) + "s" + "\t\t");
System.out.print("MpscUnboundedArrayQueue: " + testQueue(new MpscUnboundedArrayQueue<Integer>(capacity), COUNT_OF_TASK) + "s" + "\t\t");
System.out.print("MpscChunkedArrayQueue: " + testQueue(new MpscChunkedArrayQueue<Integer>(capacity), COUNT_OF_TASK) + "s" + "\t\t");
System.out.println();
}
System.out.println();
executorService.shutdown();
}
}
private static Double testQueue(final Collection<Integer> queue, final int taskCount) throws Exception {
CompletionService<Long> completionService = new ExecutorCompletionService<Long>(executorService);
long start = System.currentTimeMillis();
for (int i = 0; i < COUNT_OF_PRODUCER; i++) {
executorService.submit(new Producer(queue, taskCount / COUNT_OF_PRODUCER));
}
for (int i = 0; i < COUNT_OF_CONSUMER; i++) {
completionService.submit((new Consumer(queue, taskCount / COUNT_OF_CONSUMER)));
}
for (int i = 0; i < COUNT_OF_CONSUMER; i++) {
completionService.take().get();
}
long end = System.currentTimeMillis();
return Double.parseDouble("" + (end - start)) / 1000;
}
private static class Producer implements Runnable {
private Collection<Integer> queue;
private int taskCount;
public Producer(Collection<Integer> queue, int taskCount) {
this.queue = queue;
this.taskCount = taskCount;
}
@Override
public void run() {
// Queue队列
if (this.queue instanceof Queue) {
Queue<Integer> tempQueue = (Queue<Integer>) this.queue;
while (this.taskCount > 0) {
if (tempQueue.offer(this.taskCount)) {
this.taskCount--;
} else {
// System.out.println("Producer offer failed.");
}
}
}
// List列表
else if (this.queue instanceof List) {
List<Integer> tempList = (List<Integer>) this.queue;
while (this.taskCount > 0) {
if (tempList.add(this.taskCount)) {
this.taskCount--;
} else {
// System.out.println("Producer offer failed.");
}
}
}
}
}
private static class Consumer implements Callable<Long> {
private Collection<Integer> queue;
private int taskCount;
public Consumer(Collection<Integer> queue, int taskCount) {
this.queue = queue;
this.taskCount = taskCount;
}
@Override
public Long call() {
// Queue队列
if (this.queue instanceof Queue) {
Queue<Integer> tempQueue = (Queue<Integer>) this.queue;
while (this.taskCount > 0) {
if ((tempQueue.poll()) != null) {
this.taskCount--;
}
}
}
// List列表
else if (this.queue instanceof List) {
List<Integer> tempList = (List<Integer>) this.queue;
while (this.taskCount > 0) {
if (!tempList.isEmpty() && (tempList.remove(0)) != null) {
this.taskCount--;
}
}
}
return 0L;
}
}
}
2、指标结果:
Producers: 2 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 1.399s MpscUnboundedArrayQueue: 0.109s MpscChunkedArrayQueue: 0.09s
Producers: 2 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 1.462s MpscUnboundedArrayQueue: 0.041s MpscChunkedArrayQueue: 0.048s
Producers: 2 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 0.281s MpscUnboundedArrayQueue: 0.037s MpscChunkedArrayQueue: 0.082s
Producers: 4 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 0.681s MpscUnboundedArrayQueue: 0.085s MpscChunkedArrayQueue: 0.133s
Producers: 4 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 0.405s MpscUnboundedArrayQueue: 0.094s MpscChunkedArrayQueue: 0.172s
Producers: 4 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 0.248s MpscUnboundedArrayQueue: 0.107s MpscChunkedArrayQueue: 0.153s
Producers: 8 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 1.523s MpscUnboundedArrayQueue: 0.093s MpscChunkedArrayQueue: 0.172s
Producers: 8 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 0.668s MpscUnboundedArrayQueue: 0.094s MpscChunkedArrayQueue: 0.281s
Producers: 8 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 0.555s MpscUnboundedArrayQueue: 0.078s MpscChunkedArrayQueue: 0.455s
Producers: 16 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 2.676s MpscUnboundedArrayQueue: 0.093s MpscChunkedArrayQueue: 0.753s
Producers: 16 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 2.135s MpscUnboundedArrayQueue: 0.093s MpscChunkedArrayQueue: 0.792s
Producers: 16 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 0.944s MpscUnboundedArrayQueue: 0.098s MpscChunkedArrayQueue: 0.64s
Producers: 32 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 6.647s MpscUnboundedArrayQueue: 0.078s MpscChunkedArrayQueue: 2.109s
Producers: 32 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 3.893s MpscUnboundedArrayQueue: 0.095s MpscChunkedArrayQueue: 1.797s
Producers: 32 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 2.019s MpscUnboundedArrayQueue: 0.109s MpscChunkedArrayQueue: 2.427s
Producers: 64 Consumers: 1 Capacity: 512 LinkedBlockingQueue: 26.59s MpscUnboundedArrayQueue: 0.078s MpscChunkedArrayQueue: 3.627s
Producers: 64 Consumers: 1 Capacity: 1024 LinkedBlockingQueue: 22.566s MpscUnboundedArrayQueue: 0.093s MpscChunkedArrayQueue: 3.047s
Producers: 64 Consumers: 1 Capacity: 2048 LinkedBlockingQueue: 1.719s MpscUnboundedArrayQueue: 0.093s MpscChunkedArrayQueue: 2.549s
3、结果分析(一):
通过结果打印耗时可以明显看到MpscUnboundedArrayQueue耗时几乎大多数都是不超过0.1s的,这添加、删除的操作效率不是一般的高,这也难怪人家netty要舍弃自己写的队列框架了;
4、结果分析(二):
CompareQueueCosts代码里面我将ArrayList、LinkedList注释掉了,那是因为队列数量太大,List的操作太慢,效率低下,所以在大量并发的场景下,大家还是能避免则尽量避免,否则就遭殃了;
五、总结
1、通过底层无锁的Unsafe操作方式实现了多生产者同时访问队列的线程安全模型;
2、由于使用锁会造成的线程切换,特别消耗资源,因此使用无锁而是采用CAS的操作方式,虽然会在一定程度上造成CPU使用率过高,但是整体上将效率还是听可观的;
3、队列的数据结构是一种单向链表式的结构,通过生产、消费指针来标识添加、移除元素的指针位置,缓冲区与缓冲区之间通过指针指向,避免的数组的复制,较少了大量内存的占用情况;
六、下载地址
https://gitee.com/ylimhhmily/SpringCloudTutorial.git
SpringCloudTutorial交流QQ群: 235322432
SpringCloudTutorial交流微信群: 微信沟通群二维码图片链接
欢迎关注,您的肯定是对我最大的支持!!!