ChIP-seq 分析:Peak 注释与可视化(9)

1. 基因注释

到目前为止,我们一直在处理对应于转录因子结合的 ChIPseq 峰。顾名思义,转录因子可以影响其靶基因的表达。

转录因子的目标很难单独从 ChIPseq 数据中确定,因此我们通常会通过一组简单的规则来注释基因的峰:

如果峰与基因重叠,则通常将峰注释为基因。

2. Peak 注释

ChIPseeker 是一个有用的基因峰注释包。通过在小鼠 TXDB 对象(mm10 基因组)的来源中使用预定义的注释,ChIPseeker 将为我们提供峰落在基因中的位置以及到 TSS 位点的距离的概览。

首先加载下一部分所需的库。

library(TxDb.Mmusculus.UCSC.mm10.knownGene)
library(org.Mm.eg.db)
library(GenomeInfoDb)
library(ChIPseeker)

annotatePeak 函数接受要注释的区域的 GRanges 对象、基因位置的 TXDB 对象和要从中检索基因名称的数据库对象名称。

peakAnno <- annotatePeak(macsPeaks_GR, tssRegion = c(-500, 500), TxDb = TxDb.Mmusculus.UCSC.mm10.knownGene,
    annoDb = "org.Mm.eg.db")
peakAnno <- annotatePeak(macsPeaks_GR, tssRegion = c(-500, 500), TxDb = TxDb.Mmusculus.UCSC.mm10.knownGene,
class(peakAnno)
peakAnno

结果是一个包含峰注释和整体注释统计信息的 csAnno 对象。

peakAnno
peakAnno

csAnno 对象包含有关基因的单个峰的注释信息。要从 csAnno 对象中提取它,ChIPseeker 函数 as.GRanges 或 as.data.frame 可用于生成具有峰及其相关基因的相应对象。

peakAnno_GR <- as.GRanges(peakAnno)
peakAnno_DF <- as.data.frame(peakAnno)
peakAnno_GR[1:2, ]
peakAnno_GR

3. 可视化 Peak 注释

现在我们有了来自 ChIPseeker 的注释峰,我们可以使用 ChIPseeker 的一些绘图功能来显示基因特征中峰的分布。在这里,我们使用 plotAnnoBar 函数将其绘制为条形图,但 plotAnnoPie 会生成类似于饼图的图。

plotAnnoBar(peakAnno)
plotAnnoBar

同样,我们可以绘制 TSS 站点周围峰值的分布。

plotDistToTSS(peakAnno)
plotDistToTSS

ChIPseeker 还可以提供一个简洁的图来描述注释之间的重叠。

upsetplot(peakAnno, vennpie = F)
upsetplot

本文由mdnice多平台发布

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容