医学生都想学的纵向随访数据分析,你学会了吗?


                                                                              作者丨Lily

                                                     来源丨医数思维云课堂(ID:Datamedi)   

在医学临床实验研究中,我们经常会收集到患者的多次重复测量纵向随访数据,即每一个患者都有多次观测值,这些观测值是在不同时间记录的,观测次数、时间和间隔都不一定一样,且多次观测值都具有潜在相关性,往往在做分析时是我们更需要关注的。

那么问题来了,面对不同于我们经常收集到的横断面数据,该如何处理分析这些纵向数据呢?别急,听小编慢慢道来。

针对纵向随访数据,结合数据特点,应利用线性混合效应模型进行建模。该模型包含了固定效应以及随机效应,其中随机效应描述的是在不同层次的不同水平中,各变量对总体观察变量的贡献。

那针对线性混合效应模型,如何建模分析呢?今天小编推荐R语言当中线性混合效应模型的两个包:

1、nlme包,这是相对成熟的R包,它除了可以分析分层的线性混合效应模型,也可以处理非线性模型。在优势方面,个人认为它可以处理相处复杂的线性和非线性模型,可以定义方差协方差结构,也可以在广义线性模型中定义连接函数。缺点呢,随机效应的定义过于呆板,并且当数据量很大时,速度很慢,也不能处理多元数据。

2、lme4包,相对于nlme包而言,它的运行速度快一点,对于固定效应、随机效应的结构也可以相对更复杂一点。但是不能处理协方差和相关系数结构。

接下来通过案例,让我们更好的理解这个模型:

例:牛奶蛋白质含量这个数据是纵向数据的一个典型的例子。曾经被Diggle,et.al.(2013)等研究过,这个数据关于79头澳大利亚的奶牛牛奶蛋白质含量和三种饲料的关系,对每一头奶牛计划观测19次,每周一次,但是结果得到,有些奶牛观测了19周,有些不到19周,还有最少的观察了12次。

变量名称变量解释

id牛的编号

week第几周

protein蛋白质含量

diet饲料种类:1.barley;2.lunpins;3.mixed

01 数据的基本描述

library(lattice)

data_milk<-read.csv("milk.csv")

head(data)

xyplot(protein ~ week | diet, data = data_milk,

       type = c("b", "smooth"), lwd = 2,

       as.table = TRUE, ylab = "protein",

       xlab = "Time (weeks)")

02 建立线性混合效应模型

1、nlme包

library(nlme)

model1<-lme(protein~week+diet,random=~week|id,data_milk,method="ML")

summary(model1)

结果如下:

接下来我们可以用F检验来看各个变量的显著性

anova(model1)

结果如下:

通过上述结果来看,两个变量都显著,但week的系数是负数,这是由于总体上,一开始试验时牛奶的蛋白质含量大多相对较高,后面有几周下降,然后有回升,所以总体来说似乎随时间是下降的。

2、lme4包,但是推荐使用lmerTest包,它的结果可以输出P值,即显著性结果值。

library(lme4)

library(lmerTest)

model2<-lmer(protein~week+diet+(week|id),data_milk)

summary(model2)

结果如下:

通过上述两个包建立的模型可以看出,得到的结果几乎一样,但是lmer()函数针对变量较多时建立模型较好,运行速度较快。同时也可以看得出,我们的响应变量是定量变量,因此,我们选择建立线性混合效应模型,但若是我们的响应变量是分类变量,那方法就不一样咯。

怎么样?是不是挺简单的,希望大家多多练习。如果你有关于回归分析方面的问题,可以及时联系小编,小编一定不遗余力哟,期待我们的再次相约。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容