数据分析学习Day5---Excel(常见的Excel函数)

                                                                                    清洗处理类


数据清洗主要用于文本、格式以及脏数据的清洗和转换。

Trim

清除掉字符串两边的空格。

MySQL有同名函数,Python有近似函数strip。

Concatenate

=Concatenate(单元格1,单元格2……)

合并单元格中的内容,还有另一种合并方式是& 。"我"&"很"&"帅" = 我很帅。当需要合并的内容过多时,concatenate的效率快也优雅。

MySQL有近似函数concat。

Replace

=Replace(指定字符串,哪个位置开始替换,替换几个字符,替换成什么)

替换掉单元格的字符串,清洗使用较多。

MySQL中有同名函数,Python中有同名函数。

Substitute

和replace接近,区别是替换为全局替换,没有起始位置的概念

Left/Right/Mid

=Mid(指定字符串,开始位置,截取长度)

截取字符串中的字符。Left/Right(指定字符串,截取长度)。left为从左,right为从右,mid如上文示意。

MySQL中有同名函数。

Len/Lenb

返回字符串的长度,在len中,中文计算为一个,在lenb中,中文计算为两个。

MySQL中有同名函数,Python中有同名函数。

Find

=Find(要查找字符,指定字符串,第几个字符)

查找某字符串出现的位置,可以指定为第几次出现,与Left/Right/Mid结合能完成简单的文本提取

MySQL中有近似函数 find_in_set,Python中有同名函数。

Search

和Find类似,区别是Search大小写不敏感,但支持*通配符

Text

将数值转化为指定的文本格式,可以和时间序列函数一起看

                                                                                                         关联匹配类


Lookup

=Lookup(查找的值,值所在的位置,返回相应位置的值)

最被忽略的函数,功能性和Vlookup一样,但是引申有数组匹配和二分法。

Vlookup

=Vlookup( lookup_value ,table_array,col_index_num,[range_lookup] )

即= vlookup(找啥,在哪找,在他身上找什么,精确(false,0)找还是近似(true,1))

Index

=Index(查找的区域,区域内第几行,区域内第几列)

和Match组合,媲美Vlookup,但是功能更强大。

Match

=Match(查找指定的值,查找所在区域,查找方式的参数)

和Lookup类似,但是可以按照指定方式查找,比如大于、小于或等于。返回值所在的位置。

Index&Match组合必杀技:

摆脱了vlookup函数中搜索区域第一列必须为查找列的束缚

Row

返回单元格所在的行

Column

返回单元格所在的列

Offset

=Offset(指定点,偏移多少行,偏移多少列,返回多少行,返回多少列)

建立坐标系,以坐标系为原点,返回距离原点的值或者区域。正数代表向下或向左,负数则相反。


                                                                                                      逻辑运算类


数据分析中不得不用到逻辑运算,逻辑运算返回的均是布尔类型,True和False。很多复杂的数据分析会牵扯到较多的逻辑运算

IF

经典的如果但是,在后期的Python中,也会经常用到,当然会有许多更优雅的写法。也有ifs用法,取代if(and())的写法。

MySQL中有同名函数,Python中有同名函数。

And

全部参数为True,则返回True,经常用于多条件判断。

MySQL中有同名函数,Python中有同名函数。

Or

只要参数有一个True,则返回Ture,经常用于多条件判断。

MySQL中有同名函数,Python中有同名函数。

IS系列

常用判断检验,返回的都是布尔数值True和False。常用ISERR,ISERROR,ISNA,ISTEXT,可以和IF嵌套使用。

                                                                                                       计算统计类


Sum/Sumif/Sumifs

=Sumif(条件区域,求和条件,实际求和区域),第二个求和条件参数在第一个条件区域里。

=Sumifs(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)

sumifs(实际求和区域,第一个条件区域,第一个对应的求和条件,第二个条件区域,第二个对应的求和条件,第N个条件区域,第N个对应的求和条件)

统计满足条件的单元格总和,SQL有中同名函数。

MySQL中有同名函数,Python中有同名函数。

Sumproduct

统计总和相关,如果有两列数据销量和单价,现在要求卖出增加,用sumproduct是最方便的。

MySQL中有同名函数。

Count/Countif/Countifs

=Countif(条件区域,条件)

=COUNTIFS(条件匹配查询区域1,条件1,条件匹配查询区域2,条件2,以此类推......)

统计满足条件的字符串个数

MySQL中有同名函数,Python中有同名函数。

Max

返回数组或引用区域的最大值

MySQL中有同名函数,Python中有同名函数。

Min

返回数组或引用区域的最小值

MySQL中有同名函数,Python中有同名函数。

Rank

排序,返回指定值在引用区域的排名,重复值同一排名。

SQL中有近似函数row_number() 

Rand/Randbetween

常用随机抽样,前者返回0~1之间的随机值,后者可以指定范围。

MySQL中有同名函数。

Averagea

求平均值,也有Averageaif,Averageaifs

MySQL中有同名函数,python有近似函数mean。

Quartile

=Quartile(指定区域,分位参数)

计算四分位数,比如1~100的数字中,25分位就是按从小到大排列,在25%位置的数字,即25。参数0代表最小值,参数4代表最大值,1~3对应25、50(中位数)、75分位

Stdev

求标准差,统计型函数,后续数据分析再讲到

Subtotal

=subtotal函数的语法是:SUBTOTAL(function_num,ref1,ref2, ...)

汇总型函数,将平均值、计数、最大最小、相乘、标准差、求和、方差等参数化,换言之,只要会了这个函数,上面的都可以抛弃掉了。

隐藏值即隐藏列做所包含的值

Int/Round

取整函数,int向下取整,round按小数位取数。

round(3.1415,2) =3.14 ; 

round(3.1415,1)=3.1

                                                                                                            时间序列类


专门用于处理时间格式以及转换,时间序列在金融、财务等数据分析中占有较大比重。时机序列的处理函数比我列举了还要复杂,比如时区、分片、复杂计算等。这里只做一个简单概述。

Year

返回日期中的年

MySQL中有同名函数。

Month

返回日期中的月

MySQL中有同名函数。

Weekday

=Weekday(指定时间,参数)

返回指定时间为一周中的第几天,参数为1代表从星期日开始算作第一天,参数为2代表从星期一开始算作第一天(中西方差异)。我们中国用2为参数即可。

Weeknum

=Weeknum(指定时间,参数)

返回一年中的第几个星期,后面的参数类同weekday,意思是从周日算还是周一。

MySQL中有近似函数 week。

Day

返回日期中的日(第几号)

MySQL中有同名函数。

Date

=Date(年,月,日)

时间转换函数,等于将year(),month(),day()合并

MySQL中有近似函数 date_format。

Now

返回当前时间戳,动态函数

MySQL中有同名函数。

Today

返回今天的日期,动态函数

MySQL中有同名函数。

Datedif

=Datedif(开始日期,结束日期,参数)

日期计算函数,计算两日期的差。参数决定返回的是年还是月等。

MySQL中有近似函数 DateDiff。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351