树莓派基础实验2:RGB-LED实验

一、介绍

   RGB LED模块可以发出各种颜色的光。红色,绿色和蓝色的三个LED被封装到透明或半透明塑料外壳中,并带有四个引脚。红色,绿色和蓝色三原色可以按照亮度混合并组合各种颜色,因此可以通过控制电路使RGB LED发出彩色光。


二、组件

★Raspberry Pi 3主板*1

★树莓派电源*1

★40P软排线*1

★RGB LED模块*1

★面包板*1

★跳线若干

三、实验原理

RGB LED灯

  在本实验中,我们将使用PWM技术来控制RGB的亮度。
  脉冲宽度调制(PWM)是一种通过数字方式获取模拟结果的技术。数字控制用于创建方波,信号在高电平和低电平之间切换。这种开关模式,可以通过改变信号持续的时间部分,与信号关闭的时间来模拟全开(5V)和关(0V)之间的电压。
  “有效”的持续时间称为脉冲宽度。要获得不同的模拟值,可以更改或调制脉冲宽度。如果你使用的LED重复此开关模式足够快,结果好像信号是0到5V之间的稳定电压,控制LED的亮度

三色LED电路图

四、实验步骤

  第1步:连接电路。
将树莓派通过T型转接板连接到面包板。
树莓派GPIO 11即T型转接板G17,“红白线”连接RGB LED模块R端子;
树莓派GPIO 12 即T型转接板G18,“绿白线”连接RGB LED模块G端子;
树莓派GPIO 13 即T型转接板G27,“蓝白线”连接RGB LED模块B端子;
树莓派GND即T型转接板GND,“黑线”连接RGB LED模块GND端子。


RGB_LED连接图

实物连接图

  第2步:PC端安装VNC-Viewer软件。在我们的电脑端建立与树莓派的远程桌面连接,这样可以摆脱每次给树莓派接显示器和鼠标、键盘的麻烦。


VNC远程桌面

  第3步:PC端安装FileZilla软件。它是建立在SSH服务下的文件传输软件,通过该软件可以把电脑端编好的程序或者其它文件直接传输到我们的树莓派中。


Filezilla文件传输软件

  第4步:通过VNC-Viewer软件打开树莓派的远程桌面,然后启动IDLE后开始编程。
  RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色。在电脑中,RGB的所谓“多少”就是指亮度,并使用整数来表示。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2...直到255。注意虽然数字最高是255,但0也是数值之一,0表示没有刺激量,255表示刺激量达最大值。R、G、B均为255时就合成了白光,R、G、B均为0时就形成了黑色。
  下面代码段中的颜色列表中,用两位十六进制数表示每种颜色的刺激量,所以每种颜色用六位十六进制数表示。如“0xFF0000”表示红色,“0x00FF00”表示绿色,而 “0xFF00FF”表示介于红色和蓝色之间的紫色。

#!/usr/bin/env python   #告诉Linux本文件是一个Python程序
import RPi.GPIO as GPIO    #导入控制GPIO的模块,RPi.GPIO
import time     #导入时间模块,提供延时、时钟和其它时间函数

colors = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF] #颜色列表
R = 11        #定义物理针脚号
G = 12
B = 13

  第5步: 初始化设置LED灯。输入输出模式、初始电平、频率、占空比。脉宽调制(PWM),是指用微处理器的数字输出对模拟电路进行控制,是一种对模拟信号电平进行数字编码的方法。

def setup(Rpin, Gpin, Bpin):
    global pins   #在函数内部声明被其修饰的变量是全局变量
    global p_R, p_G, p_B
    pins = {'pin_R': Rpin, 'pin_G': Gpin, 'pin_B': Bpin}
    GPIO.setmode(GPIO.BOARD)      #设置引脚编号模式为板载模式,即树莓派上的物理位置编号
    for i in pins:
        GPIO.setup(pins[i], GPIO.OUT)    # 设置针脚模式为输出(或者输入GPIO.IN)
        GPIO.output(pins[i], GPIO.LOW) # Set pins to low(0 V) to off led
    
    p_R = GPIO.PWM(pins['pin_R'], 2000)  # set Frequece to 2KHz
    p_G = GPIO.PWM(pins['pin_G'], 1999)
    p_B = GPIO.PWM(pins['pin_B'], 5000)
    
    p_R.start(0)      # Initial duty Cycle = 0(leds off)
    p_G.start(0)
    p_B.start(0)

  PWM的频率决定了输出的数字信号on (1) 和 off(0 )的切换速度。频率越高,切换就越快。
  占空比:指一串理想脉冲序列中,正脉冲的持续时间与脉冲总周期的比值。调整led通过电流和不通过电流的时间比来控制的,由于人眼有视觉暂留特性,所以只要频率比较高是看不出来闪烁的。当然通过电流比不通过电流的时间比例越大,led做的功就越多,这样也就越亮,需要注意的是led芯片的温升和最大电流值不要超标,不然会影响其寿命。

  低占空比意味着输出的能量低,因为在一个周期内大部分时间信号处于关闭状态,如果pwm控制的负载为led,则具体表现例如led灯很暗。
  高占空比意味着输出的能量高,在一个周期内,大部分时间信号处于on状态,具体表现为LED比较亮。
  当占空比为100%时,表示 fully on,也就是在一个周期内,信号都处于on状态,具体表现为led亮度到达100%。
  当占空比为0%时则表示 totally off,在一个周期内,一直处于off状态,具体表现为led熄灭。

  现在一切都明了了:脉冲宽度调制,这个宽,不是物体的宽度,而是高电平(有效电平)信号在一个调制周期中持续时间长短,它可以用占空比去衡量,占空比越大,脉冲宽度越宽。取值范围为0到100。

  第6步:定义两个小函数。由于RGB格式各颜色的刺激量取值范围为:最小0,最大255,而占空比的取值范围为:最小0,最大100,所以要将颜色的刺激量转换为占空比对应的值。

def map(x, in_min, in_max, out_min, out_max): #将颜色的刺激量转换为占空比对应的值。
    return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def off():
    for i in pins:
        GPIO.output(pins[i], GPIO.LOW)    # Turn off all leds

  第7步:创建setcolor()函数。通过更改占空比调整各基色的亮度,进而设置LED的发光颜色。

def setColor(col):   # For example : col = 0x112233
    R_val = (col & 0xff0000) >> 16   #先“与”运算只保留自己颜色所在位的值有效
    G_val = (col & 0x00ff00) >> 8    #再“右移”运算将自己颜色所在位的值提取出来
    B_val = (col & 0x0000ff) >> 0

    R_val = map(R_val, 0, 255, 0, 100)  #将颜色的刺激量转换为占空比对应的值
    G_val = map(G_val, 0, 255, 0, 100)
    B_val = map(B_val, 0, 255, 0, 100)
    
    p_R.ChangeDutyCycle(R_val)     # 更改占空比,调整该颜色的亮度
    p_G.ChangeDutyCycle(G_val)
    p_B.ChangeDutyCycle(B_val)

  第8步:定义循环函数。

def loop():
    while True:
        for col in colors:
            setColor(col)
            time.sleep(1)

  第9步:定义清除LED状态的函数。

def destroy():
    p_R.stop()      #Turn off PWM
    p_G.stop()
    p_B.stop()
    off()              # Turn off all leds
    GPIO.cleanup()     #重置GPIO状态

  第10步:创建异常处理。一个Python文件通常有两种使用方法:一是作为脚本直接执行;二是import到其它的Python脚本中被调用执行。if __name__ == "__main__":语句的作用就是控制这两种执行代码的过程,该语句只在第一种(作为脚本直接执行)时为真,而import到其它脚本中执行时为假。

  原理是:每个Python模块都包含内置的变量__name__,当该模块被直接执行时,__name__等于文件名(\color{red}{包含}后缀.py),如果该模块import到其它模块中执行,该模块的__name__等于文件名(\color{red}{不包含}后缀.py),而 "__main__"始终等于当前模块的名称(\color{red}{包含}后缀.py),所以......

if __name__ == "__main__":
    try:                       #用try-except代码块来处理可能引发的异常
        setup(R, G, B)      #调用初始化设置LED灯的函数
        loop()                     #调用循环函数
    except KeyboardInterrupt:      #如果遇用户中断(control+C),则执行destroy()函数
        destroy()             #调用清除LED状态的函数

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343