Python 通过ThreadPoolExecutor 线程池执行文件

参考文章:
https://docs.python.org/zh-cn/3.7/library/concurrent.futures.html
https://juejin.im/post/5cf913cfe51d45105d63a4d0

前言

从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor (线程池)和ProcessPoolExecutor (进程池)两个类。
相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值:

  • 1.主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
  • 2.当一个线程完成的时候,主线程能够立即知道。
  • 3.让多线程和多进程的编码接口一致。

线程池的基本使用

# coding: utf-8
from concurrent.futures import ThreadPoolExecutor
import time


def spider(page):
    time.sleep(page)
    print(f"crawl task{page} finished")
    return page

with ThreadPoolExecutor(max_workers=5) as t:  # 创建一个最大容纳数量为5的线程池
    task1 = t.submit(spider, 1)
    task2 = t.submit(spider, 2)  # 通过submit提交执行的函数到线程池中
    task3 = t.submit(spider, 3)

    print(f"task1: {task1.done()}")  # 通过done来判断线程是否完成
    print(f"task2: {task2.done()}")
    print(f"task3: {task3.done()}")

    time.sleep(2.5)
    print(f"task1: {task1.done()}")
    print(f"task2: {task2.done()}")
    print(f"task3: {task3.done()}")
    print(task1.result())  # 通过result来获取返回值

执行结果如下:

task1: False
task2: False
task3: False
crawl task1 finished
crawl task2 finished
task1: True
task2: True
task3: False
1
crawl task3 finished

    1. 使用 with 语句 ,通过 ThreadPoolExecutor 构造实例,同时传入 max_workers 参数来设置线程池中最多能同时运行的线程数目。
    1. 使用 submit 函数来提交线程需要执行的任务到线程池中,并返回该任务的句柄(类似于文件、画图),注意 submit() 不是阻塞的,而是立即返回。
    1. 通过使用 done() 方法判断该任务是否结束。上面的例子可以看出,提交任务后立即判断任务状态,显示四个任务都未完成。在延时2.5后,task1 和 task2 执行完毕,task3 仍在执行中。
    1. 使用 result() 方法可以获取任务的返回值。

主要方法:

wait(fs, timeout=None, return_when=ALL_COMPLETED)

wait 接受三个参数:
  • fs: 表示需要执行的序列
  • timeout: 等待的最大时间,如果超过这个时间即使线程未执行完成也将返回
  • return_when:表示wait返回结果的条件,默认为 ALL_COMPLETED 全部执行完成再返回
    还是用上面那个例子来熟悉用法 示例:
from concurrent.futures import ThreadPoolExecutor, wait, FIRST_COMPLETED, ALL_COMPLETED
import time

def spider(page):
    time.sleep(page)
    print(f"crawl task{page} finished")
    return page

with ThreadPoolExecutor(max_workers=5) as t: 
    all_task = [t.submit(spider, page) for page in range(1, 5)]
    wait(all_task, return_when=FIRST_COMPLETED)
    print('finished')
    print(wait(all_task, timeout=2.5))

# 运行结果
crawl task1 finished
finished
crawl task2 finished
crawl task3 finished
DoneAndNotDoneFutures(done={<Future at 0x28c8710 state=finished returned int>, <Future at 0x2c2bfd0 state=finished returned int>, <Future at 0x2c1b7f0 state=finished returned int>}, not_done={<Future at 0x2c3a240 state=running>})
crawl task4 finished

  • 1.代码中返回的条件是:当完成第一个任务的时候,就停止等待,继续主线程任务
  • 2.由于设置了延时, 可以看到最后只有 task4 还在运行中

as_completed

上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。最好的方法是当某个任务结束了,就给主线程返回结果,而不是一直判断每个任务是否结束。
ThreadPoolExecutorThreadPoolExecutor 中 的 as_completed() 就是这样一个方法,当子线程中的任务执行完后,直接用 result() 获取返回结果
用法如下:

# coding: utf-8
from concurrent.futures import ThreadPoolExecutor, as_completed
import time


def spider(page):
    time.sleep(page)
    print(f"crawl task{page} finished")
    return page

def main():
    with ThreadPoolExecutor(max_workers=5) as t:
        obj_list = []
        for page in range(1, 5):
            obj = t.submit(spider, page)
            obj_list.append(obj)

        for future in as_completed(obj_list):
            data = future.result()
            print(f"main: {data}")

# 执行结果
crawl task1 finished
main: 1
crawl task2 finished
main: 2
crawl task3 finished
main: 3
crawl task4 finished
main: 4

as_completed() 方法是一个生成器,在没有任务完成的时候,会一直阻塞,除非设置了 timeout。
当有某个任务完成的时候,会yield这个任务,就能执行 for 循环下面的语句,然后继续阻塞住,循环到所有的任务结束。同时,先完成的任务会先返回给主线程。

map

map(fn, *iterables, timeout=None)

  • 1.fn: 第一个参数 fn 是需要线程执行的函数;
  • 2.iterables:第二个参数接受一个可迭代对象;
  • 3.timeout: 第三个参数 timeout 跟 wait() 的 timeout 一样,但由于 map 是返回线程执行的结果,如果 timeout小于线程执行时间会抛异常 TimeoutError。
    用法如下:
import time
from concurrent.futures import ThreadPoolExecutor

def spider(page):
    time.sleep(page)
    return page

start = time.time()
executor = ThreadPoolExecutor(max_workers=4)

i = 1
for result in executor.map(spider, [2, 3, 1, 4]):
    print("task{}:{}".format(i, result))
    i += 1

#  运行结果
task1:2
task2:3
task3:1
task4:4

使用 map 方法,无需提前使用 submit 方法,map 方法与 python 高阶函数 map 的含义相同,都是将序列中的每个元素都执行同一个函数。
上面的代码对列表中的每个元素都执行 spider() 函数,并分配各线程池。
可以看到执行结果与上面的 as_completed() 方法的结果不同,输出顺序和列表的顺序相同,就算 1s 的任务先执行完成,也会先打印前面提交的任务返回的结果。

✨ 实战

以某网站为例,演示线程池和单线程两种方式爬取的差异

# coding: utf-8
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import json
from requests import adapters

from proxy import get_proxies

headers = {
    "Host": "splcgk.court.gov.cn",
    "Origin": "https://splcgk.court.gov.cn",
    "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36",
    "Referer": "https://splcgk.court.gov.cn/gzfwww/ktgg",
}
url = "https://splcgk.court.gov.cn/gzfwww/ktgglist?pageNo=1"

def spider(page):
    data = {
        "bt": "",
        "fydw": "",
        "pageNum": page,
    }
    for _ in range(5):
        try:
            response = requests.post(url, headers=headers, data=data, proxies=get_proxies())
            json_data = response.json()
        except (json.JSONDecodeError, adapters.SSLError):
            continue
        else:
            break
    else:
        return {}

    return json_data

def main():
    with ThreadPoolExecutor(max_workers=8) as t:
        obj_list = []
        begin = time.time()
        for page in range(1, 15):
            obj = t.submit(spider, page)
            obj_list.append(obj)

        for future in as_completed(obj_list):
            data = future.result()
            print(data)
            print('*' * 50)
        times = time.time() - begin
        print(times)

if __name__ == "__main__":
    main()

运行结果如下:

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容