异常检测学习笔记--Task01:异常检测介绍

1.目标要求

  • 了解异常检测基本概念
  • 了解异常检测基本方法

2 异常检测基本内容

2.1 异常检测应用场景

与预期行为差异较大的数据,例如,识别信用卡欺诈、工业生产异常、网络流量异常等问题。

2.2 异常的类别

点异常、上下文异常、群体异常

2.3 异常检测数据集、

常分为三种:

  • 统计型数据static data(文本、网络流)
  • 序列型数据sequential data(sensor data )
  • 空间型数据spatial data(图像、视频)

3.异常检测常用方法:

3.1传统方法

3.1.1基于统计学的方法

思想:学习生成一个拟合给定数据集的生成模型,识别该模型低概率区域中的对象,把他们当作异常点。

3.1.2 线性模型

PCA主成分分析。降维并最大程度保留原始数据特征。缓解高维灾难。

3.1.3 基于相似度的方法

适用范围:数据点聚集程度高、离群点较少
缺点:计算量大,不太适用于数据量大、高维度的数据
基于集群的检测:DBSCAN等聚类算法
基于距离的度量:k近邻算法
基于密度的度量:LOF算法

3.2 集成方法

将多个算法或多个基检测器输出结合使用。
常用方法:feature bagging, 孤立森林

3.3 机器学习

gbdt、xgboost分类
缺点:异常检测场景下数据标签不均衡
优点:构造不同特征

4.常用开源库

Scikit-Learn、pyod

4.1 开源库的安装

4.1.1 查看anaconda指令

打开anaconda prompt,输入conda help

conda help

接下来将会显示conda的指令及用法

usage: conda-script.py [-h] [-V] command ...

conda is a tool for managing and deploying applications, environments and packages.

Options:

positional arguments:
  command
    clean        Remove unused packages and caches.
    compare      Compare packages between conda environments.
    config       Modify configuration values in .condarc. This is modeled after the git config command. Writes to the
                 user .condarc file (C:\Users\Lenovo\.condarc) by default.
    create       Create a new conda environment from a list of specified packages.
    help         Displays a list of available conda commands and their help strings.
    info         Display information about current conda install.
    init         Initialize conda for shell interaction. [Experimental]
    install      Installs a list of packages into a specified conda environment.
    list         List linked packages in a conda environment.
    package      Low-level conda package utility. (EXPERIMENTAL)
    remove       Remove a list of packages from a specified conda environment.
    uninstall    Alias for conda remove.
    run          Run an executable in a conda environment. [Experimental]
    search       Search for packages and display associated information. The input is a MatchSpec, a query language
                 for conda packages. See examples below.
    update       Updates conda packages to the latest compatible version.
    upgrade      Alias for conda update.

optional arguments:
  -h, --help     Show this help message and exit.
  -V, --version  Show the conda version number and exit.

conda commands available from other packages:
  build
  content-trust
  convert
  debug
  develop
  env
  index
  inspect
  metapackage
  render
  repo
  server
  skeleton
  token
  verify
###4.1.2 使用anaconda安装scikit-learn

这里我们使用conda install来安装Scikit-learn开源机器学习库。

conda install -c anaconda scikit-learn

安装完成后,使用如下命令测试,若出现下述界面则安装成功

>>> import sklearn
>>>

4.1.2 使用anaconda安装pyod

pip install pyod

安装完成后,使用如下命令测试,若出现下述界面则安装成功

>>> import pyod
>>>
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容