Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
题目分析:
对一个给定的整数数组和特定的target,数组中存在一对元素的和为target,返回这两个元素的下标。假定每个输入都只有一个确定的输出。
解:
根据题干和e.g, 确保结果中序号小的在前。
Solution:
vector<int> twoSum(vector<int>& nums, int target)
{
vector<int> rst;
for (int i = 0; i != nums.size(); i++)
{
for (int j = 0/*i+1*/; j != nums.size(); j++)
{
if (nums[i] + nums[j] == target)
{
rst.push_back(i);
rst.push_back(j);
return rst;
}
}
}
return rst;
}
没什么好说的,最多优化j初始值为i+1;
T(n) = O(n^2);
S(n) = 1;
vector<int> twoSum(vector<int>& nums, int target)
{
vector<int> rst;
vector<int>::iterator it_find;
for (int i = 0; i != nums.size(); ++i)
{
int numRst = target - nums[i];
it_find = find(nums.begin() + (i + 1), nums.end(), numRst);//i+1开始,防止重复查找
if (it_find != nums.end()) //find numRst
{
rst.push_back(i);
rst.push_back(it_find - nums.begin());
return rst;
}
}
return rst;
}
基于BR-Tree的std::map::find: T(n) = O(log(n))
则solution2
T(n) = O(n*log(n))
S(n) = 1
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> hash;
vector<int> rst;
for (int i = 0; i != nums.size(); ++i)
{
int numRst = target - nums[i];
if (hash.find(numRst) != hash.end())
{
rst.push_back(hash[numRst]);
//called latest is necessary
//because hash[numRst] always smaller than i
rst.push_back(i);
return rst;
}
hash[nums[i]] = i; //insert nums
}
return rst;
}
由于unordered_hash::find是不可控的,所以为了避免查找的重复和避免target = nums[i] *2的情况,采用了先查找再插入的做法。
需要注意的是:
unordered_map的find方法 不是基于BR-TREE的查找 而是基于 Direct Hash 和 link-address的。
std::map/multmap的find方法 才是基于BR-TREE的查找。
unordered_map::find: T(n) = O(1)
solution3:
T(n) = O(n);
S(n) = O(n);