ML学习路线

已经大致了解这个领域所用到的知识,根据网上的参考进行1.0阶段的学习,看了前面的知道我对PGM特别感兴趣啊,所以感谢夕小瑶(wx:xixiaoyaoQAQ)按照她的提供的知识结构给自己定个计划。 已经完成的都会带有我在学习过程中见到比较好的资料,或者我自己总的,这样减少大家在学习过程中找资料的成本

第一阶段(六、七月):基本模型

辅助用视频Ng的courses《machine learning》,台湾国立大学林老师《机器学习基石》、《数据挖掘导论》第4、5章

第二阶段(八月~):最优化(和第一阶段部分是重合,这些会加上代码实现)

复习《概率论与数理统计》、理解《Deep Learning》中的4.3节和4.4节,《Numerical Optimazation》、《最优化理论与方法》袁亚湘,孙文瑜、《统计学习方法》、《数据 挖掘导论》、《机器学习实战》、《智能优化方法》

  • 一阶无约束优化算法
    • 梯度下降法(步长的确定方法、线搜索法,信赖域法)
  • 二阶无约束优化算法
    • 牛顿法
    • 共轭梯度法
    • 拟牛顿法
  • 约束优化算法
    • 线性规划(概念与应用、单纯形法、内点法)
    • 二次规划(概念与应用、对偶法、积极集法)
    • 拉格朗日乘子法的简单认识
  • 感知机模型
  • K近邻模型
  • 朴素贝叶斯模型
  • 决策树模型
  • 支持向量机模型
  • 集成分类器
    • Bagging
    • Boosting
    • Random Forest
  • 遗传算法
  • 模拟退火
  • 禁忌搜索算法
  • 蚁群算法
  • 粒子群优化算法
  • LDA/PCA
  • SVD

第三阶段:模式识别与深度学习

  • 贝叶斯决策(《模式分类》)
  • 参数估计
  • 非参数方法
  • 线性判别函数
  • 浅层神经网络
    • delta方法
    • BP算法及其优化
    • RBF网络
  • 深度神经网络(DL中文版书籍)
    • Hopfield网络
    • 玻尔兹曼机
    • RBM
    • DBN
    • DBM
    • CNN
    • Autoencoder
    • RNN
    • LSTM
  • 聚类
    • 高斯混合密度
    • K-means
    • 层次聚类
  • 决策树与随机森林
  • 特征提取与特征选择

第四阶段:

应该是各种框架和工程,比赛吧,哈哈,到这个阶段就有自己的方向,现在自己也不知道干啥,哈哈哈

贯穿始终:

知识点:(每一周深入学习一种网络)
《统计学习方法》、《Deep Learning》、《模式分类》

  • 前馈神经网络

  • 自编码器(Auto-Encoder)递归神经网络(Recursive NN) / 循环神经网络(RNN)/ 卷积神经网络(CNN) / 神经张量网络 (NTN)

  • 长短时记忆网络(LSTM) / 卷积长短时神经网络(convLSTM) / 张量递归神经网络(MV-RNN)/递归神经张量网络(RNTN)

  • 受限波尔兹曼机(RBM) / 玻尔兹曼机

  • 概率图模型

  • 有向图模型->贝叶斯网络

  • 无向图模型->马尔科夫随机场->条件随机场

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容

  • 这个世界上有许多事情,你以为明天一定可以再继续做的,有很多人,你以为一定可以再见面的,于是,在你暂时放下手,或者暂...
    Nirvana闫岩阅读 128评论 0 1
  • 暑晴的天气 呼伴的鸟儿和着蝉鸣 丝瓜花下结满了丝瓜 到处是葱茏的草木 到处是浓郁的夏意 当然,肯定少不了那厚厚的阳...
    庆善阅读 358评论 12 11