我眼中的数据科学家

# 我眼中的数据科学家

## 1. Computer Science Foundation

### Data Structure

### Algorithm

- LeetCode Question (t)

### OO Programming

- Design Pattern (book) (l)

- Refactoring (book) (l)

### Functional Programming

- Scala (l)

### Debugging

### Linux / Shell script

- Common linux command (l)

> ls, cp, (l)

- Network knowledge (scp, curl, ftp, http...) (l)

- Awk, Vim (l)

- Shell script (l)

### Makefile / CMake (l)

### Parallel Programming (l)

### C++

- C++ Primer (l)

- C++ Acceleartor (l)

- 50 Principle of C++ (l)

### Database Management

- SQL (make a cheatsheet for it !!! ) (m)

- database optimization (write this in resume is more concrete than just say 'database management')  (l)

-----

## 2. Python Skill

### Core Python knowledge

### Python Standard Library

### Numpy/SciPy/Matplotlib/pandas

- Pandas DataFrame cheatsheet

- Introduction to Numpy

> make a cheatsheet of Numpy ! (t)

### Python's Machine Learning Package

- Theano

- Scikit-learn

> Scikit-learn's interface is not well designed for statistics analysis. It is mainly for ML(makeing prediction, classification).

> Scikit-learn's implementation of Regression. Is it use GSD or just matrix operation?? How is it different from statsmodel's regression implementation?(which I am pretty sure it just use matrix implementation)

>- worth to spend sometime to read it source code

- statsmodels

> understand how they implement basic OLS and GLM model

> learn the design of statistical package through reading source code

### Python's interface to Hadoop (Impyla, Happybase, etc...)

- impyla (spend some time to study the source code of impyla)

- happybase

----

## 3. Hadoop / AWS

### Hadoop Software

- Hbase / Impala

- buy Hadoop Definite Guide (book)

### MapReduce

### AWS

- setup instance / account / system

- Use AWS as MapReduce tool to do data analysis (EMR)

- AWS programming

----

## 4. Machine Learning (except deep learning)

### R language

- Cheetsheet of R's core syntax

- Use R to do data mining (data cleaning, preprocessing, machine learning)

- Use R to do big data ?? (interface to Hadoop? )

### Common model

- SVM

- Logistic Regression

- Random Forest

- Boosting Tree / Boosting method

### Optimization / Numerical Method

- Gradient Descent /  SGD

- Newton's method

- How they are applied to solve the ML problem. And how to program them

### Learn through example and practise

- Study through Kaggle example and kaggle blog

+ study a example of email spanning blog post and learn how they do such task

+ study a example of text classification blog post

----

## 5. Deep Learning

### Area:

- Image Processing

- NLP

- Finance

### Model:

- CNN

- RNN

+ RNN's theory and implementation (Torch or Caffe)

+ RNN's application (and preprocessing)

+ Watch Oxford's online course (about use Torch + RNN)

+ etc...

- Unsupervised Learning

- Reinforcement Learning

### Feature Engineering

### Tools:

- Caffe

> TO DO:

> beside image, what else can caffe do?

> Consider of future career, I am probably not very interested in image type data

> I am more interested in NLP, finance and other application. Is Caffe still a good choice for them?

> Does caffe has a good RNN implementation ?

- Torch

- Python/Theano

### Theory of Neural Network

> Forward/backward computation

> Loss function selection

> Optimization method (Alex has a good paper that cover these theory)

> How loss function/optimization apply to different domain (NLP, .etc )

----

## 6. Statistics / Math

### A/B test

- when to use which test

- read the book "introduction to biostatistics"

### Mathematical Statistics (2nd year)

### ANOVA

- how to interpret the result and concept

### Probability Theory

### Stochastic Process (important for finance)

----

## 7. Domain Knowledge

### Finance

### Signal Processing

-----

## 8. Data Scientist Job Seeking

- Keep reading the data scientist/engineer requirement from different industry

- Keep reading the interview question / feedback on glassdoor

> do they focus more on statistics or engineering/cs ?

> do they require coding test?

> what kind of statistics question do they ask?

> what kind of CS background do they require?

> what are the useful project for getting interview?

> How to connect data science with finance?

> How to connect data science with future career and business ?

- do coding challenges (LeetCode, others ... )

## 9. Career Development

-------------

##### ==========================================

## Priority list:

- t: top priroity

- m: middle priority

- l: low priority

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容