R语言机器学习与临床预测模型24--C-statistics&C-index

本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程

R小盐准备介绍R语言机器学习与预测模型的学习笔记

你想要的R语言学习资料都在这里, 快来收藏关注【科研私家菜】


01 C-statistics&C-index计算

C-statistics即为C统计量是ROC曲线下面积。如果这个logistic回归用于预测或诊断,roc曲线下面积可以估计用logistic回归模型进行诊断或预测的能力。
Logistic回归模型根据预测概率绘制ROC曲线,其曲线下面积AUC = C-Statistics
C-index,即一致性指数(index of concordance),通过评估模型预测结果与实际观察结果的符合程度,以评价模型的预测准确性。
所谓一致性,就是把研究对象随机地两两组对,对于一对病人,如果A实际生存时间长于B,且模型预测的A的生存时间也长于B,则称之为预测结果与实际结果一致。
C-index本质是计算预测结果与实际结果一致的情况所占的比例,类似于ROC曲线下面积AUC。理论上,C-index取值范围是[0.5-1],若预测与实际完全不一致,则C-index = 0.5,也即模型并无比随机好,没啥实际效用。若模型预测结果与实际结果完全一致,则C-index = 1。
Cox回归中的C-Statistics 一般称为C-index。

#C-statistics计算
library(foreign) 
library(rms)

mydata<-read.spss("lweight.sav")
mydata<-as.data.frame(mydata)
head(mydata)

mydata$low <- ifelse(mydata$low =="低出生体重",1,0)

mydata$race1 <- ifelse(mydata$race =="白种人",1,0)
mydata$race2 <- ifelse(mydata$race =="黑种人",1,0)
mydata$race3 <- ifelse(mydata$race =="其他种族",1,0)

attach(mydata)

dd<-datadist(mydata)
options(datadist='dd')

fit1<-lrm(low~age+ftv+ht+lwt+ptl+smoke+ui+race1+race2,data=mydata,x=T,y=T)
fit1 #直接读取模型中Rank Discrim.参数 C

mydata$predvalue<-predict(fit1)
library(ROCR)
pred <- prediction(mydata$predvalue, mydata$low)
perf<- performance(pred,"tpr","fpr")
plot(perf)
abline(0,1)
auc <- performance(pred,"auc")
auc #auc即是C-statistics
somers2(mydata$predvalue, mydata$low) #somers2 {Hmisc}
library(rms)
CstatisticCI <- function(x) {
  se <- x["S.D."]/sqrt(x["n"])
  Low95 <- x["C Index"] - 1.96*se 
  Upper95 <- x["C Index"] + 1.96*se 
  cbind(x["C Index"], Low95, Upper95) 
}
cindex <- rcorr.cens(data$prediction,data$event)
cindex
print(CstatisticCI(cindex))
# 该方法可以获得Dxy,但是这个跟cox直接出来的Cindex相比要少,是因为Dxy的原因吗?
# COX的计算
# 根据survival包,可以计算Dxy
# 把-值去掉, |Dxy|/2+0.5


02 模型比较方法

似然比检验
  # 方法1
  # model1 vs model2 (直接使用model名称即可)
  anova(model1,model2) 
  # 方法2
  library(rms)
all.X <-data.frame(x.T=data.T, x.N=data.N, x.S=data.S, x.G=data.G, x.V=data.V, x.P=data.P, x.CEA2=data.CEA2, x.CA1992=data.CA1992)
TN.model <- cph(Surv(survival.time,survival.status)~ x.T+x.N, 
                data=all.X, na.action=na.omit )
TNC.model <- cph(Surv(survival.time,survival.status)~ x.T+x.N+x.CEA2, 
                 data=all.X, na.action=na.omit )
TN2TNC <- lrtest(TN.model, TNC.model)
  # 本质上就是对LIKEHOOD进行卡方检验
  # 经过检验发现,这两者的结果是一致的,均可采用。

基于survcomp包计算c.index
library("survival")
library("prodlim")
library("survcomp")
C_index1 <- concordance.index(x=data$model1_prediction, surv.time=data$time, surv.event=data$event,method="noether")
# 往上翻可以直接查看到C_index以及置信区间
C_index1
C_index2 <- concordance.index(x=data$model2_prediction, surv.time=data$time, surv.event=data$event, method="noether")
C_index2
cindex.comp(C_index1, C_index2)

方法3

compareC包

方法4

nricens包
PredictABEL包

方法5 - 生存数据 cox

survIDINRI包


关注R小盐,关注科研私家菜(VX_GZH: SciPrivate),有问题请联系R小盐。让我们一起来学习 R语言机器学习与临床预测模型

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容