2020-10-14 入门小组DAY6-三三

学习R包——以dplyr为例

R包是多个函数的集合,具有详细的说明和示例。
学生信,R语言必学的原因是丰富的图表和Biocductor上面的各种生信分析R包。包的使用是一通百通的,我们以dplyr为例,讲一下R包。

安装和加载R包

1. 镜像设置

image.png

2. 安装
R包安装命令是install.packages(“包”)或者BiocManager::install(“包”)。取决于你要安装的包存在于CRAN网站还是Biocductor,存在于哪里可以谷歌搜到。

3. 加载
library(包)require(包)均可。

安装加载三部曲###

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)

示例数据直接使用内置数据集iris的简化版:test <- iris[c(1:2,51:52,101:102),]

image.png

dplyr的五个基础函数

  1. mutate():新增列
    新增列
  2. select():按列筛选
  • 按序号筛选
    select(test,1)
    select(test,c(1,5))
    select(test,Sepal.Length)
    image.png
  • 按列名筛选
    select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
image.png
  1. filter():筛选行
    filter(test, Species == "setosa")
    filter(test, Species == "setosa"&Sepal.Length > 5 )
    filter(test, Species %in% c("setosa","versicolor"))
    image.png
  2. arrange():按某1列或某几列对整个表格进行排序
    arrange(test, Sepal.Length)#默认从小到大排序
    arrange(test, desc(Sepal.Length))#用desc从大到小
    image.png
  3. summarise():汇总【对数据进行汇总操作,结合group_by使用实用性强】
    summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
    平均值和标准差
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
image.png

dplyr两个实用技能

  1. 管道操作 %>%
    快捷键:cmd/ctr + shift + M,然后就会出来%>%这个符号
    加载任意一个tidyverse包即可用管道符号
test %>%
+ group_by(Species) %>%
+ summarise(mean(Sepal.Length),sd(Sepal.Length))
image.png
  1. count函数——统计某列的unique值
    count(test,Species)
    image.png

dplyr处理关系数据

即将2个表进行连接。
注意:不要引入factor。

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 
image.png
  1. 內连 inner_join:取交集
    inner_join(test1,test2,by="x")

    内连取交集

  2. 左连 left_join
    left_join(test1, test2, by = 'x')
    left_join(test2, test1, by = 'x')

    左连

  3. 全连 full_join
    full_join( test1, test2, by = 'x')

    全连

  4. 半连接 semi_join:返回能够与y表匹配的x表所有记录
    semi_join(x = test1, y = test2, by = 'x')

    image.png

  5. 反连接 anti_join:返回无法与y表匹配的x表的所记录
    anti_join(x = test2, y = test1, by = 'x')

    image.png

  6. 简单合并
    在相当于base包里的cbind()函数和rbind()函数
    注意:bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数。

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
test3 <- data.frame(z = c(100,200,300,400))
test3

bind_rows(test1, test2)
bind_cols(test1, test3)

image.png

简单合并
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351